OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Vol. 6, Iss. 8 — Aug. 10, 2008
  • pp: 572–574

Finite element beam propagation method for analysis of plasmonic waveguide

Jianjun Chen, Zhaofeng Li, Zhongchao Fan, and Fuhua Yang  »View Author Affiliations


Chinese Optics Letters, Vol. 6, Issue 8, pp. 572-574 (2008)


View Full Text Article

Acrobat PDF (754 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The basic idea of the finite element beam propagation method (FE-BPM) is described. It is applied to calculate the fundamental mode of a channel plasmonic polariton (CPP) waveguide to confirm its validity. Both the field distribution and the effective index of the fundamental mode are given by the method. The convergence speed shows the advantage and stability of this method. Then a plasmonic waveguide with a dielectric strip deposited on a metal substrate is investigated, and the group velocity is negative for the fundamental mode of this kind of waveguide. The numerical result shows that the power flow direction is reverse to that of phase velocity.

© 2008 Chinese Optics Letters

OCIS Codes
(000.3860) General : Mathematical methods in physics
(130.0130) Integrated optics : Integrated optics
(240.0240) Optics at surfaces : Optics at surfaces

Citation
Jianjun Chen, Zhaofeng Li, Zhongchao Fan, and Fuhua Yang, "Finite element beam propagation method for analysis of plasmonic waveguide," Chin. Opt. Lett. 6, 572-574 (2008)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-6-8-572


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Ozbay, Science 311, 189 (2006).
  2. H. Zhao, X. Huang, and H. Su, Acta Opt. Sin. (in Chinese) 27, 1649 (2007).
  3. H. Raether, Surface Plasmons (Springer, Berlin, 1988).
  4. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
  6. D. K. Gramotnev and D. F. P. Pile, Appl. Phys. Lett. 85, 6323 (2004).
  7. M. P. Nezhad, K. Tetz, and Y. Fainman, Opt. Express 12, 4072 (2004).
  8. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, Opt. Express 12, 5481 (2004).
  9. D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027402 (2003).
  10. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikati, J. Lightwave Technol. 20, 1054 (2002).
  11. K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
  12. M. Koshiba, Optical Waveguide Theory by the Finite Element Method (KTK, Holland, 1992).
  13. J. M. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993).
  14. M. Koshiba and Y. Tsuji, J. Lightwave Technol. 18, 737 (2000).
  15. C. L. Xu, W. P. Huang, and S. K. Chaudhuri, J. Lightwave Technol. 11, 1209 (1993).
  16. D. Schulz, C. Glingener, M. Bludszuweit, and E. Voges, J. Lightwave Technol. 16, 1336 (1998).
  17. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, IEEE Photon. Technol. Lett. 8, 649 (1996).
  18. M. Koshiba, Y. Tsuji, and M. Hikari, IEEE Trans. Magn. 35, 1482 (1999).
  19. G. Veronis and S. Fan, Proc. SPIE 6123, 612308 (2006).
  20. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, Phys. Rev. Lett 95, 063901 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited