OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 7, Iss. 1 — Jan. 1, 2009
  • pp: 60–63

Raman spectroscopic identification of normal and malignant hepatocytes

Jianyu Guo, Bing Du, Min Qian, Weiying Cai, Zugeng Wang, and Zhenrong Sun  »View Author Affiliations

Chinese Optics Letters, Vol. 7, Issue 1, pp. 60-63 (2009)

View Full Text Article

Acrobat PDF (254 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Raman spectroscopy has strong potential for providing non-invasion diagnosis of cancers. In this paper, micro-Raman spectroscopy is used to diagnose one most common liver cancer, hepatocellular carcinoma (HCC). The statistical analyzes, including t-test, principal component analysis (PCA), and linear discriminant analysis (LDA), are performed on the Raman spectra of malignant and normal hepatocytes. The t-test-LDA results show that the 786- and 1004-cm^{-1} bands of the malignant and normal hepatocytes are significantly different, and PCA-LDA results show an overall accuracy of 100% for the Raman spectroscopic identification of normal and malignant hepatocytes in our experiment.

© 2009 Chinese Optics Letters

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(300.6450) Spectroscopy : Spectroscopy, Raman

Jianyu Guo, Bing Du, Min Qian, Weiying Cai, Zugeng Wang, and Zhenrong Sun, "Raman spectroscopic identification of normal and malignant hepatocytes," Chin. Opt. Lett. 7, 60-63 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. L. Wong, Am. J. Surg. 183, 309 (2002).
  2. Y. S. Kim, S. Y. Sohn, and C. N. Yoon, Biomed. Pharmacother. 57, 482 (2003).
  3. Y. H. Ko, P. L. Pedersen, and J. F. Geschwind, Cancer Lett. 173, 83 (2001).
  4. J.-S. Huang, C.-C. Chao, T.-L. Su, S.-H. Yeh, D.-S. Chen, C.-T. Chen, P.-J. Chen, and Y.-S. Jou, Biochem. Biophys. Res. Commun. 315, 950 (2004).
  5. R. Malini, K. Venkatakrishna, J. Kurien, K. M. Pai, L. Rao, V. B. Kartha, and C. M. Krishna, Biopolymers 81, 179 (2006).
  6. P. Crow, A. Molckovsky, N. Stone, J. Uff, B. Wilson, and L.-M. Wongkeesong, Urology 65, 1126 (2005).
  7. N. Stone, C. Kendall, N. Shepherd, P. Crow, and H. Barr, J. Raman Spectrosc. 33, 564 (2002).
  8. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, PNAS 102, 12371 (2005).
  9. Y. Li, R. Chen, H. Zeng, Z. Huang, S. Feng, and S. Xie, Chin. Opt. Lett. 5, 105 (2007).
  10. Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, Int. J. Cancer 107, 1047 (2003).
  11. R. Manoharan, Y. Wang, and M. S. Feld, Spectrochim. Acta Part A 52, 215 (1996).
  12. J. Choi, J. Choo, H. Chung, D.-G. Gweon, J. Park, H. J. Kim, S. Park, and C.-H. Oh, Biopolymers 77, 264 (2005).
  13. S. Fendel and B. Schrader, Fresenius' J. Anal. Chem. 360, 609 (2002).
  14. S. R. Hawi, W. B. Campbell, A. Kajdacsy-Balla, R. Murphy, F. Adar, and K. Nithipatikom, Cancer Lett. 110, 35 (1996).
  15. A. Gaigneaux, J.-M. Ruysschaert, and E. Goormaghtigh, Eur. J. Biochem. 269, 1968 (2002).
  16. I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, Biopolymers 72, 230 (2003).
  17. A. T. Tu, Raman Spectroscopy in Biology: Principles and Applications (Wiley, New York, 1982) p.72.
  18. P. R. Carey, Biochemical Applications of Raman and Resonance Raman Spectroscopies (Academic, New York, 1982) p.71.
  19. C. Krafft, T. Knetschke, A. Siegner, R. H. W. Funk, and R. Salzer, Vibrat. Spectrosc. 32, 75 (2003).
  20. I. Notingher, J. Selvakumaran, and L. L. Hench, Biosensors Bioelectron. 20, 780 (2004).
  21. J. Guo, W. Cai, J. Yang, and Z. Sun, Chin. Opt. Lett. 6, 421 (2008).
  22. B. R. Wood, B. Tait, and D. McNaughton, Biochim Biophys. Acta 1539, 58 (2001).
  23. H. P. Buschman, G. Deinum, J. T. Motz, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. Bruschke, and M. S. Feld, Cardiovasc. Pathol. 10, 69 (2001).
  24. K. C. Schuster, E. Urlaub, and J. R. Gapes, J. Microbiol. Methods 42, 29 (2000).
  25. N. Fujioka, Y. Morimoto, T. Arai, and M. Kikuchi, Cancer Detection and Prevention 28, 32 (2004).
  26. C. Eliasson, J. Engelbrektsson, A. Lorén, J. Abrahamsson, K. Abrahamsson, and M. Josefson, Chemometrics and Intelligent Laboratory 81, 13 (2006).
  27. C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, Anal. Chem. 77, 4390 (2005).
  28. P. Crow, J. S. Uff, J. A. Farmer, M. P. Wright, and N. Stone, BJU International 93, 1232 (2004).
  29. T. Hasegawa, J. Nishijo, and J. Umemura, Chem. Phys. Lett. 317, 642 (2000).
  30. B. J. Marquardt and J. P. Wold, Lebensm. Wiss. u. Technol. 37, 1 (2004).
  31. C. M. Krishna, G. D. Sockalingum, G. Kegelaer, S. Rubin, V. B. Kartha, and M. Manfait, Vibrat. Spectrosc. 38, 95 (2005).
  32. Z. Seregély, T. Deák, and G. D. Bisztray, Chemometrics and Intelligent Laboratory 72, 195 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited