OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 7, Iss. 10 — Oct. 1, 2009
  • pp: 882–885

Electronic structure of GaAs/AlGaAs quantum double rings in lateral electric field

Y. Yao, T. Ochiai, T. Mano, T. Kuroda, T. Noda, N. Koguchi, and K. Sakoda  »View Author Affiliations

Chinese Optics Letters, Vol. 7, Issue 10, pp. 882-885 (2009)

View Full Text Article

Acrobat PDF (1026 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A three-dimensional model of GaAs/AlGaAs quantum double rings in the lateral static electric field is investigated theoretically. The eigenvalue problem with the effective-mass approximation is solved by means of the finite-element method. The energy levels and wave functions of quantum-confined electrons and heavy holes are obtained and show an agreement with our previous theoretical and experimental studies. It is shown in the approximation of neglecting the Coulomb attraction between the electron and heavy hole that a relatively large Stark shift of exciton emission of 4 meV is attainable with an applied electric field of 0.7 kV/cm.

© 2009 Chinese Optics Letters

OCIS Codes
(160.6000) Materials : Semiconductor materials
(260.6580) Physical optics : Stark effect
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

Y. Yao, T. Ochiai, T. Mano, T. Kuroda, T. Noda, N. Koguchi, and K. Sakoda, "Electronic structure of GaAs/AlGaAs quantum double rings in lateral electric field," Chin. Opt. Lett. 7, 882-885 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Nature 425, 944 (2003).
  2. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Opt. Express 13, 1202 (2005).
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchkin, and D. G. Deppe, Nature 432, 200 (2004).
  4. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, Nature 445, 896 (2007).
  5. T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, Appl. Phys. Lett. 93, 111103 (2008).
  6. M. Yamagiwa, T. Kuroda, T. Mano, K. Sakoda, and N. Koguchi, in Extended Abstracts of the 68th Autumn Meeting of the Japan Society of Applied Physics (in Japanese) 3, 1415 (2007).
  7. E. M. Purcell, Phys. Rev. 69, 681 (1946).
  8. T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai, T. Tateno, J. Kim, T. Noda, M. Kawabe, K. Sakoda, G. Kido, and N. Koguchi, Nano Lett. 5, 425 (2005).
  9. N. Koguchi, S. Takahashi, and T. Chikyow, J. Cryst. Growth 111, 688 (1991).
  10. T. Mano, T. Kuroda, K. Kuroda, and K. Sakoda, J. Nanophoton. 3, 031605 (2009).
  11. T. Kuroda, T. Mano, T. Ochiai, S. Sanguinetti, K. Sakoda, G. Kido, and N. Koguchi, Phys. Rev. B 72, 205301 (2005).
  12. J. I. Climente, J. Planelles, M. Barranco, F. Malet, and M. Pi, Phys. Rev. B 73, 235327 (2006).
  13. J. Planelles and J. I. Climente, Eur. Phys. J. B 48, 65 (2005).
  14. F. J. Culchac, N. Porras-Montenegro, and A. Latge, J. Phys.: Condens. Matter 20, 285215 (2008).
  15. B. Szafran and F. M. Peeters, Phys. Rev. B 72, 155316 (2005).
  16. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
  17. L. Pavesi and M. Guzzi, J. Appl. Phys. 75, 4779 (1994).
  18. M. Yamagiwa, N. Sumita, F. Minami, and N. Koguchi, J. Lumin. 108, 379 (2004).
  19. J. M. Llorens, C. Trallero-Giner, A. Garcia-Cristobal, and A. Cantarero, Phys. Rev. B 64, 035309 (2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited