OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 7, Iss. 2 — Jan. 10, 2009
  • pp: 121–123

A high sensitive fiber Bragg grating cryogenic temperature sensor

Kuo Li, Zhen'an Zhou, and Aichun Liu  »View Author Affiliations

Chinese Optics Letters, Vol. 7, Issue 2, pp. 121-123 (2009)

View Full Text Article

Acrobat PDF (273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


At cryogenic temperature, a fiber Bragg grating (FBG) temperature sensor with controllable sensitivity and variable measurement range is demonstrated by using bimetal configuration. In experiments, sensitivities of -51.2, -86.4, and -520 pm/K are achieved by varying the lengths of the metals. Measurement ranges of 293-290.5, 283-280.5, and 259-256.5 K are achieved by shortening the distance of the gap among the metals.

© 2009 Chinese Optics Letters

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature
(230.1480) Optical devices : Bragg reflectors

Kuo Li, Zhen'an Zhou, and Aichun Liu, "A high sensitive fiber Bragg grating cryogenic temperature sensor," Chin. Opt. Lett. 7, 121-123 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. Gupta, T. Mizunami, T. Yamao, and T. Shimomura, Appl. Opt. 35, 5202 (1996).
  2. C. Lupi, F. Felli, L. Ippoliti, M. A. Caponero, M. Ciotti, V. Nardelli, and A. Paolozzi, Smart Mater. Struct. 14, N71 (2005).
  3. T. Mizunami, H. Tatehata, and H. Kawashima, Meas. Sci. Technol. 12, 914 (2001).
  4. S. W. James, R. P. Tatam, A. Twin, M. Morgan, and P. Noonan, Meas. Sci. Technol. 13, 1535 (2002).
  5. E. M. Dianov, A. S. Kurkov, O. I. Medvedkov, S. A. Vasiliev, D. Baykin, S. Bender, and A. Koretsky, in Proceedings of Lasers and Electro-Optics Europe 1998 243 (1998).
  6. Y. W. Lee and B. Lee, Sensors and Actuators A 96, 25 (2002).
  7. J. Jung, H. Nam, B. Lee, J. O. Byun, and N. S. Kim, Appl. Opt. 38, 2752 (1999).
  8. K. Li, Z. Zhou, A. Liu, and X. Wang, Acta Opt. Sin. (in Chinese) 29, 249 (2009).
  9. W. W. Morey and W. L. Glomb,"Incorporated Bragg filter temperature compensated optical waveguide device" US patent 5,042,898 (Aug. 27, 1991).
  10. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, Appl. Opt. 34, 6859 (1995).
  11. Y.-L. Lo and C.-P. Kuo, IEEE Trans. Adv. Packag. 25, 50 (2002).
  12. G. K. White, J. Phys. D 6, 2070 (1973).
  13. Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 13, 1167 (2001).
  14. W. Zhang, L. Liu, F. Li, and Y. Liu, Chin. Opt. Lett. 5, 507 (2007).
  15. Y. Zhan, S. Xue, and Q. Yang, Chin. Opt. Lett. 5, 135 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited