OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 7, Iss. 3 — Mar. 1, 2009
  • pp: 226–230

InGaN/GaN laser diode characterization and quantum well number effect

S. M. Thahab, H. Abu Hassan, and Z. Hassan  »View Author Affiliations

Chinese Optics Letters, Vol. 7, Issue 3, pp. 226-230 (2009)

View Full Text Article

Acrobat PDF (2166 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The effect of quantum well number on the quantum efficiency and temperature characteristics of InGaN/GaN laser diodes (LDs) is determined and investigated. The 3-nm-thick In_{0.13}Ga_{0.87}N wells and two 6-nm-thick GaN barriers are selected as an active region for Fabry-Perot (FP) cavity waveguide edge emitting LD. The internal quantum efficiency and internal optical loss coefficient are extracted through the simulation software for single, double, and triple InGaN/GaN quantum wells. The effects of device temperature on the laser threshold current, external differential quantum efficiency (DQE), and output wavelength are also investigated. The external quantum efficiency and characteristic temperature are improved significantly when the quantum well number is two. It is indicated that the laser structures with many quantum wells will suffer from the inhomogeneity of the carrier density within the quantum well itself which affects the LD performance.

© 2009 Chinese Optics Letters

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.2020) Lasers and laser optics : Diode lasers
(270.0270) Quantum optics : Quantum optics

S. M. Thahab, H. Abu Hassan, and Z. Hassan, "InGaN/GaN laser diode characterization and quantum well number effect," Chin. Opt. Lett. 7, 226-230 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, Appl. Phys. Lett. 73, 2006 (1998).
  2. E. Berkowicz, D. Gershoni, G. Bahir, E. Lakin, D. Shilo, E. Zolotoyabko, A. C. Abare, S. P. Denbaars, and L. A. Coldren, Phys. Rev. B 61, 10994 (2000).
  3. Z. I. Kazi, T. Egawa, T. Jimbo, and M. Umeno, IEEE Photon. Technol. Lett. 11, 1563 (1999).
  4. T. Higashi, T. Yamamoto, S. Ogita, and M. Kobayashi, IEEE J. Sel. Top. Quantum Electron. 3, 513 (1997).
  5. J. Piprek, P. Abraham, and J. E. Bowers, IEEE J. Sel. Top. Quantum Electron. 5, 643 (1999).
  6. K. Domen, R. Soejima, A. Kuramata, K. Horino, S. Kubota, and T. Tanahashi, Appl. Phys. Lett. 73, 2775 (1998).
  7. Integrated System Engineering (ISE TCAD) AG, Switzerland, http://www.synopsys.com (Feb. 25, 2008).
  8. H. Y. Zhang, X. H. He, Y. H. Shih, M. Schurman, Z. C. Feng, and R. A. Stall, Opt. Lett. 21, 1529 (1996).
  9. R. K. Sink, "Cleaved-facet III-nitride laser diode" PhD Thesis (University of California at Santa Barbara, 2000).
  10. D. Fritsch, H. Schmidt, and M. Grundmann, Phys. Rev. B 67, 235205 (2003).
  11. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 80, 4741 (2002).
  12. S. Nukamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Jpn. J. Appl. Phys. 37, L1020 (1998).
  13. S. M. Thahab, H. A. Hassan, and Z. Hassan, Opt. Express 15, 2380 (2007).
  14. T. Mukai, S. Nagahama, T. Yanamoto, and M. Sano, Phys. Stat. Sol. a 192, 261 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited