OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 7, Iss. 3 — Mar. 1, 2009
  • pp: 231–234

Photonic bands, gap maps, and intrinsic losses in three-component 2D photonic crystal slabs

Hongjun Shen, Huiping Tian, and Yuefeng Ji  »View Author Affiliations

Chinese Optics Letters, Vol. 7, Issue 3, pp. 231-234 (2009)

View Full Text Article

Acrobat PDF (1584 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We obtain the photonic bands and intrinsic losses for the triangular lattice three-component two-dimensional (2D) photonic crystal (PhC) slabs by expanding the electromagnetic field on the basis of waveguide modes of an effective homogeneous waveguide. The introduction of the third component into the 2D PhC slabs influences the photonic band structure and the intrinsic losses of the system. We examine the dependences of the band gap width and gap edge position on the interlayer dielectric constant and interlayer thickness. It is found that the gap edges shift to lower frequencies and the intrinsic losses of each band decrease with the increasing interlayer thickness or dielectric constant. During the design of the real PhC system, the effect of unintentional native oxide surface layer on the optical properties of 2D PhC slabs has to be taken into consideration. At the same time, intentional oxidization of macroporous PhC structure can be utilized to optimize the design.

© 2009 Chinese Optics Letters

OCIS Codes
(160.0160) Materials : Materials
(300.0300) Spectroscopy : Spectroscopy
(300.6170) Spectroscopy : Spectra

Hongjun Shen, Huiping Tian, and Yuefeng Ji, "Photonic bands, gap maps, and intrinsic losses in three-component 2D photonic crystal slabs," Chin. Opt. Lett. 7, 231-234 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  2. Y. Benachour and N. Paraire, Chin. Opt. Lett. 5, 501 (2007).
  3. Z. Zhou, X. Huang, R. Vanga, and R. Li, Chin. Opt. Lett. 5, 693 (2007).
  4. H. Wang, J. Wang, W. Li, and W. Ding, Chin. Opt. Lett. 6, 431 (2008).
  5. C. Tan, X. Huang, and G. Fan, Acta Opt. Sin. (in Chinese) 27, 482 (2007).
  6. Y. Li, P. Gu, B. Wang, Z. Zhen, and X. Liu, Acta Opt. Sin. (in Chinese) 28, 169 (2008).
  7. D. Gerace and L. C. Andreani, Opt. Lett. 29, 1897 (2004).
  8. R. Ferrini, D. Leuenberger, R. Houdré, H. Benisty, M. Kamp, and A. Forchel, Opt. Lett. 31, 1426 (2006).
  9. W. Bogaerts, P. Bienstman, and R. Baets, Opt. Lett. 28, 689 (2003).
  10. R. Ferrini, B. Lombardet, B. Wild, R. Houdré, and G.-H. Duan, Appl. Phys. Lett. 82, 1009 (2003).
  11. A. Glushko and L. Karachevtseva, Photon. Nanostruct. 4, 141 (2006).
  12. X. Zhang, Z.-Q. Zhang, L.-M. Li, C. Jin, D. Zhang, B. Man, and B. Cheng, Phys. Rev. B 61, 1892 (2000).
  13. X. Zhang and Z.-Q. Zhang, Phys. Rev. B 61, 9847 (2000).
  14. T. Trifonov, L. F. Marsal, A. Rodríguez, J. Pallarès, and R. Alcubilla, Phys. Rev. B 70, 195108 (2004).
  15. E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, Appl. Phys. Lett. 89, 181108 (2006).
  16. M. Thitsa, Y. Song, and S. Albin, J. Electrochem. Soc. 155, H351 (2008).
  17. L. C. Andreani and D. Gerace, Phys. Rev. B 73, 235114 (2006).
  18. L. C. Andreani and M. Agio, IEEE J. Quantum Electron. 38, 891 (2002).
  19. H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gosele, Phys. Rev. B 70, 205110 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited