OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Vol. 7, Iss. 4 — Apr. 1, 2009
  • pp: 286–290

Reverse current reduction of Ge photodiodes on Si without post-growth annealing

Sungbong Park, Shinya Takita, Yasuhiko Ishikawa, Jiro Osaka, and Kazumi Wada  »View Author Affiliations


Chinese Optics Letters, Vol. 7, Issue 4, pp. 286-290 (2009)


View Full Text Article

Acrobat PDF (613 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A new approach to reduce the reverse current of Ge pin photodiodes on Si is presented, in which an i-Si layer is inserted between Ge and top Si layers to reduce the electric field in the Ge layer. Without post-growth annealing, the reverse current density is reduced to ~10 mA/cm2 at -1 V, i.e., over one order of magnitude lower than that of the reference photodiode without i-Si layer. However, the responsivity of the photodiodes is not severely compromised. This lowered-reverse-current is explained by band-pinning at the i-Si/i-Ge interface. Barrier lowering mechanism induced by E-field is also discussed. The presented "non-thermal" approach to reduce reverse current should accelerate electronics-photonics convergence by using Ge on the Si complementary metal oxide semiconductor (CMOS) platform.

© 2009 Chinese Optics Letters

OCIS Codes
(040.0040) Detectors : Detectors

Citation
Sungbong Park, Shinya Takita, Yasuhiko Ishikawa, Jiro Osaka, and Kazumi Wada, "Reverse current reduction of Ge photodiodes on Si without post-growth annealing," Chin. Opt. Lett. 7, 286-290 (2009)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-7-4-286

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited