OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 7, Iss. 7 — Jul. 1, 2009
  • pp: 560–563

Improving spatial resolution in fiber Raman distributed temperature sensor by using deconvolution algorithm

Lei Zhang, Xue Feng, Wei Zhang, and Xiaoming Liu  »View Author Affiliations

Chinese Optics Letters, Vol. 7, Issue 7, pp. 560-563 (2009)

View Full Text Article

Acrobat PDF (363 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The deconvolution algorithm is adopted on the fiber Raman distributed temperature sensor (FRDTS) to improve the spatial resolution without reducing the pulse width of the light source. Numerical simulation shows that the spatial resolution is enhanced by four times using the frequency-domain deconvolution algorithm with high temperature accuracy. In experiment, a spatial resolution of 15 m is realized using a master oscillator power amplifier light source with 300-ns pulse width. In addition, the dispersion-induced limitation of the minimum spatial resolution achieved by deconvolution algorithm is analyzed. The results indicate that the deconvolution algorithm is a beneficial complement for the FRDTS to realize accurate locating and temperature monitoring for sharp temperature variations.

© 2009 Chinese Optics Letters

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(100.1830) Image processing : Deconvolution

Lei Zhang, Xue Feng, Wei Zhang, and Xiaoming Liu, "Improving spatial resolution in fiber Raman distributed temperature sensor by using deconvolution algorithm," Chin. Opt. Lett. 7, 560-563 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. Chen, W. Liu, Y. Zhang, J. Liu, R. Kan, M. Wang, X. Fang, and Y. Cui, Chin. Opt. Lett. 5, 121 (2007).
  2. K. Xie, Y. Rao, and Z. Ran, Acta Opt. Sin. (in Chinese) 28, 569 (2008).
  3. A. Sun, J. Chen, G. Li, L. Wang, L. Chang, and Z. Lin, Chinese J. Lasers (in Chinese) 34, 503 (2007).
  4. L. Zhang, Y. Liao, Z. Ou, Y. Liu, Z. Dai, Z. Peng, and D. Wang, Acta Opt. Sin. (in Chinese) 27, 400 (2007).
  5. H. Liu, S. Zhuang, Z. Zhang, and C. Feng, Proc. SPIE 5634, 225 (2005).
  6. A. H. Hartog, J. Lightwave Technol. 1, 498 (1983).
  7. X. Feng, L. Zhang, and X. Liu, Chin. Opt. Lett. 5, 99 (2007).
  8. R. Bernini, A. Minardo, and L. Zeni, IEEE Photon. Technol. Lett. 16, 1143 (2004).
  9. S. Fu, C. Wu, Y. Li, and X. Dong, Proc. SPIE 5634, 241 (2005).
  10. A. Bennia and S. M. Riad, IEEE Trans. Instrum. Meas. 39, 358 (1990).
  11. M. A. Farahani and T. Gogolla, J. Lightwave Technol. 17, 1379 (1999).
  12. G. Yilmaz and S. E. Karlik, Sens. Actuat. A 125, 148 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited