OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 7, Iss. 7 — Jul. 1, 2009
  • pp: 617–620

Numerical analysis for four-wave mixing based wavelength conversion of differential phase-shift keying signals

Liang Jia, Fan Zhang, Ming Li, Yuliang Liu, and Zhangyuan Chen  »View Author Affiliations

Chinese Optics Letters, Vol. 7, Issue 7, pp. 617-620 (2009)

View Full Text Article

Acrobat PDF (286 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We numerically investigate the main constrains for high efficiency wavelength conversion of differential phase-shift keying (DPSK) signals based on four-wave mixing (FWM) in highly nonlinear fiber (HNLF). Using multi-tone pump phase modulation techniques, high efficiency wavelength conversion of DPSK signals is achieved with the stimulated Brillouin scattering (SBS) effects effectively suppressed. Our analysis shows that there is a compromise between conversion efficiency and converted idler degradation. By optimizing the pump phase modulation configuration, the converted DPSK idler's degradation can be dramatically decreased through balancing SBS suppression and pump phase modulation degradation. Our simulation results also show that these multi-tone pump phase modulation techniques are more appropriate for the future high bit rate systems.

© 2009 Chinese Optics Letters

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5060) Fiber optics and optical communications : Phase modulation
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

Liang Jia, Fan Zhang, Ming Li, Yuliang Liu, and Zhangyuan Chen, "Numerical analysis for four-wave mixing based wavelength conversion of differential phase-shift keying signals," Chin. Opt. Lett. 7, 617-620 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. J. B. Yoo, J. Lightwave Technol. 24, 4468 (2006).
  2. R. Elschner, C.-A. Bunge, B. Httl, A. Gual i Coca, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, and K. Petermann, IEEE J. Sel. Top. Quantum Electron. 14, 666 (2008).
  3. X. Zhang, X. Ren, Z. Wang, Y. Xu, Y. Huang, and X. Chen, Chin. Opt. Lett. 5, 386 (2007).
  4. Q. Wang, B. Yang, L. Zhang, H. Zhang, and L. He, Chin. Opt. Lett. 5, 538 (2007).
  5. F. S. Yang, M. E. Marhic, and L. G. Kazovsky, Electron. Lett. 32, 2336 (1996).
  6. J. Hansryd and P. A. Andrekson, IEEE Photon. Technol. Lett. 13, 194 (2001).
  7. P. J. Winzer and R.-J. Essiambre, J. Lightwave Technol. 24, 4711 (2006).
  8. J. Dong, X. Zhang, and D. Huang, Acta Opt. Sin. (in Chinese) 28, 1327 (2008).
  9. P. Devgan, R. Tang, V. S. Grigoryan, and P. Kumar, J. Lightwave Technol. 24, 3677 (2006).
  10. L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, IEEE Photon. Technol. Lett. 16, 1591 (2004).
  11. A. Richter, I. Koltchanov, K. Kuzmin, E. Myslivets, and R. Freund, in Proceedings of OFC2005 NTuH3 (2005).
  12. R. H. Stolen, Proc. IEEE 68, 1232 (1980).
  13. J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, J. Lightwave Technol. 23, 3808 (2005).
  14. M. Lorenzen, D. Noordegraaf, C. V. Nielsen, O. Odgaard, L. Grner-Nielsen, and K. Rottwitt, in Proceedings of OFC2008 OML1 (2008).
  15. K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, IEEE Photon. Technol. Lett. 14, 911 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited