OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 8, Iss. 10 — Oct. 1, 2010
  • pp: 926–930

Fluorescence lifetime imaging of molecular rotors to map microviscosity in cells (Invited Paper)

James A. Levitt, Marina K. Kuimova, Gokhan Yahioglu, Pei-Hua Chung, Klaus Suhling, and David Phillips  »View Author Affiliations

Chinese Optics Letters, Vol. 8, Issue 10, pp. 926-930 (2010)

View Full Text Article

Acrobat PDF (1044 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Fluorescence liftime imaging (FLIM) of modified hydrophobic bodipy dyes that act as fluorescent molecular rotors shows that the fluorescence lifetime of these probes is a function of the microviscosity of their environment. Incubating cells with these dyes, we find a punctate and continuous distribution of the dye in cells. The viscosity value obtained in what appears to be endocytotic vesicles in living cells is around 100 times higher than that of water and of cellular cytoplasm.Time-resolved fluorescence anisotropy measurements also yield rotational correlation times consistent with large microviscosity values. In this way, we successfully develop a practical and versatile approach to map the microviscosity in cells based on imaging fluorescent molecular rotors.

© 2010 Chinese Optics Letters

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(180.0180) Microscopy : Microscopy
(300.0300) Spectroscopy : Spectroscopy

James A. Levitt, Marina K. Kuimova, Gokhan Yahioglu, Pei-Hua Chung, Klaus Suhling, and David Phillips, "Fluorescence lifetime imaging of molecular rotors to map microviscosity in cells (Invited Paper)," Chin. Opt. Lett. 8, 926-930 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. F. Festy, S. M. Ameer-Beg, T. Ng, and K. Suhling, Molecular Biosystems 3, 381 (2007).
  2. F. S. Wouters, Contemporary Physics 47, 239 (2006).
  3. E. A. Jares-Erijman and T. M. Jovin, Nature Biotechnol. 21, 1387 (2003).
  4. H. Wallrabe and A. Periasamy, Current Opinion in Biotechnol. 16, 19 (2005).
  5. D. K. Bird, K. M. Agg, N. W. Barnett, and T. A. Smith, J. Microsc.-Oxford 226, 18 (2007).
  6. T. Ni and L. A. Melton, Appl. Spectrosc. 50, 1112(1996).
  7. G. Liaugaudas, A. T. Collins, K. Suhling, G. Davies, and R. Heintzmann, J. Phys. Condensed Matter 21, 364210(2009).
  8. R. K. P. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M. A. A. Neil, A. J. deMello, and P. M. W. French, Opt. Express 13, 6275 (2005).
  9. A. D. Elder, S. M. Matthews, J. Swartling, K. Yunus, J. H. Frank, C. M. Brennan, A. C. Fisher, and C. F. Kaminski, Opt. Express 14, 5456 (2006).
  10. D. Comelli, G. Valentini, R. Cubeddu, and L. Toniolo, Appl. Spectrosc. 59, 1174 (2005).
  11. D. M. Togashi, R. I. S. Romao, A. M. G. da Silva, A. J. F. N. Sobral, and S. M. B. Costa, Phys. Chem. Chem. Phys. 7, 3875 (2005).
  12. J. Requejo-Isidro, J. McGinty, I. Munro, D. S. Elson, N. P. Galletly, M. J. Lever, M. A. A. Neil, G. W. H. Stamp, P. M. W. French, and P. A. Kellett, Opt. Lett. 29, 2249(2004).
  13. K. Suhling, P. M.W. French, and D. Phillips, Photochem. Photobiol. Sci. 4, 13 (2005).
  14. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (3rd edn.) (Springer, New York, 2006).
  15. B. Valeur, Molecular Fluorescence (Wiley, Weinheim, 2002).
  16. M. K. Kuimova, S. W. Botchway, A. W. Parker, M. Balaz, H. A. Collins, H. L. Anderson, K. Suhling, and P. R. Ogilby, Nature Chem. 1, 69 (2009).
  17. E. Kaliviotis and M. Yianneskis, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 221, 887 (2007).
  18. K. Luby-Phelps, S. Mujumdar, R. Mujumdar, and L. A. Ernst, Biophys. J. 65, 236 (1993).
  19. J. A. Dix and A. S. Verkman, Biophys. J. 57, 231 (1990).
  20. K. Suhling, J. Siegel, P. M. P. Lanigan, S. Leveque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis, and P. M. W. French, Opt. Lett. 29, 584 (2004).
  21. J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, Rev. Sci. Instrum. 74, 182 (2003).
  22. A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, Biophys. J. 83, 1631(2002).
  23. D. S. Lidke, P. Nagy, B. G. Barisas, R. Heintzmann, J. N. Post, K. A. Lidke, A. H. A. Clayton, D. J. Arndt-Jovin, and T. M. Jovin, Biochem. Soc. Trans. 31, 1020 (2003).
  24. A. N. Bader, E. G. Hofman, P. Henegouwen, and H. C. Gerritsen, Opt. Express 15, 6934 (2007).
  25. J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, Current Opinion in Biotechnol. 20, 28 (2009).
  26. M. A. Haidekker and E. A. Theodorakis, Org. Biomol. Chem. 5, 1669 (2007).
  27. A. C. Benniston, A. Harriman, V. L. Whittle, and M. Zelzer, Eur. J. Org. Chem. 2010, 523 (2010).
  28. B. D. Allen, A. C. Benniston, A. Harriman, S. A. Rostron, and C. F. Yu, Phys. Chem. Chem. Phys. 7, 3035 (2005).
  29. J. A. Levitt, M. K. Kuimova, G. Yahioglu, P.-H. Chung, K. Suhling, and D. Phillips, J. Phys. Chem. C 113, 11634 (2009).
  30. M. K. Kuimova, G. Yahioglu, J. A. Levitt, and K. Suhling, J. Am. Chem. Soc. 130, 6672 (2008).
  31. G. Hungerford, A. Allison, D. McLoskey, M. K. Kuimova, G. Yahioglu, and K. Suhling, J. Phys. Chem. B 113, 12067 (2009).
  32. T. F¨oster and G. Hoffmann, Zeitschrift f¨ur Physikalische Chemie Neue Folge (in German) 75, 63 (1971).
  33. B. Wilhelmi, Chem. Phys. 66, 351 (1982).
  34. R. O. Loutfy, Pure Appl. Chem. 58, 1239 (1986).
  35. A. Rei, G. Hungerford, and M. I. C. Ferreira, J. Phys. Chem. B 112, 8832 (2008).
  36. K. Y. Law, Photochem. Photobiol. 33, 799 (1981).
  37. K. I. Gutkowski, M. L. Japas, and P. F. Aramendia, Chem. Phys. Lett. 426, 329 (2006).
  38. A. Paul and A. Samanta, J. Phys. Chem. B 112, 16626 (2008).
  39. J. Lu, C. L. Liotta, and C. A. Eckert, J. Phys. Chem. A 107, 3995 (2003).
  40. M. A. Haidekker, A. G. Tsai, T. Brady, H. Y. Stevens, J. A. Frangos, E. Theodorakis, and M. Intaglietta, Am. J. Physiol.-Heart and Circulatory Physiology 282, H1609(2002).
  41. C. E. Kung and J. K. Reed, Biochemistry 28, 6678(1989).
  42. M. Haidekker, T. P. Brady, D. Lichlyter, and E. A. Theodorakis, J. Am. Chem. Soc. 128, 398 (2006).
  43. N. Periasamy, M. Armijo, and A. S. Verkman, Biochemistry 30, 11836 (1991).
  44. K. Fushimi and A. S. Verkman, J. Cell Biol. 112, 719(1991).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited