OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 8, Iss. 2 — Feb. 1, 2010
  • pp: 170–172

Monte-Carlo simulation of effective stiffness of time-sharing optical tweezers

Yuxuan Ren, Jianguang Wu, Mincheng Zhong, and Yinmei Li  »View Author Affiliations

Chinese Optics Letters, Vol. 8, Issue 2, pp. 170-172 (2010)

View Full Text Article

Acrobat PDF (370 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The Brownian motion of a polystyrene bead trapped in a time-sharing optical tweezers (TSOT) is numerically simulated by adopting Monte-Carlo technique. By analyzing the Brownian motion signal, the effective stiffness of a TSOT is acquired at different switching frequencies. Simulation results confirm that for a specific laser power and duty ratio, the effective stiffness varies with the frequency at low frequency range, while at high frequency range it keeps constant. Our results reveal that the switching frequency can be used to control the stability of time-sharing optical tweezers in a range.

© 2010 Chinese Optics Letters

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(250.6715) Optoelectronics : Switching
(250.4110) Optoelectronics : Modulators

Yuxuan Ren, Jianguang Wu, Mincheng Zhong, and Yinmei Li, "Monte-Carlo simulation of effective stiffness of time-sharing optical tweezers," Chin. Opt. Lett. 8, 170-172 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G.-B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, Opt. Express 16, 1996 (2008).
  2. J. Wu, Y. Ren, Z. Wang, C. Zhou, and Y. Li, Chinese J. Lasers (in Chinese) 45, 35 (2009).
  3. W. H. Guilford, J. A. Tournas, D. Dascalu, and D. S. Watson, Anal. Biochem. 326, 153 (2004).
  4. V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. C.-Moisan, Opt. Express 12, 3906 (2004).
  5. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Opt. Lett. 16, 1463 (1991).
  6. C. Mio, T. Gong, A. Terray, and D. W. M. Marr, Rev. Sci. Instrum. 71, 2196 (2000).
  7. R. T. Dame, M. C. Noom, and G. J. L. Wuite, Nature 444, 387 (2006).
  8. M.-T. Wei, A. Zaorski, H. C. Yalcin, J. Wang, M. Hallow, S. N. Ghadiali, A. Chiou, and H. D. Ou-Yang, Opt. Express 16, 8594 (2008).
  9. V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. C.-Moisan, Opt. Express 12, 3906 (2004).
  10. Q. Song, C. Wen, Y. Zhang, G. Wang, and A. Ye, Chin. Opt. Lett. 6, 600 (2008).
  11. T. Pang, An Introduction to Computational Physics (Cambridge Univesity Press, Cambridge, 1997).
  12. Z. Gong, H. Chen, S. Xu, Y. Li, and L. Lou, Opt. Commun. 263, 229 (2006).
  13. S. Xu, Y. Li, L. Lou, and Z. Sun, Chin. Phys. 14, 382 (2005).
  14. H. Riskin, The Fokker-Planck Equation (Springer, Berlin, 1984) p.77.
  15. G. E. P. Box and H. L. Lucas, Biometrika 46, 77 (1959).
  16. M. Zhou, H. Yang, J. Di, and E. Zhao, Chin. Opt. Lett. 6, 919 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited