OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Vol. 8, Iss. 3 — Mar. 1, 2010
  • pp: 316–319

Equal-amplitude optical comb generation using multi-frequency phase modulation in optical fibers

Yuelan Lu, Yongwei Xing, and Yongkang Dong  »View Author Affiliations


Chinese Optics Letters, Vol. 8, Issue 3, pp. 316-319 (2010)


View Full Text Article

Acrobat PDF (446 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We theoretically analyze and experimentally demonstrate a method of generating equal-amplitude optical comb exploiting multi-frequency phase modulation. The theoretical analysis shows that 4n-1 equal amplitude spectral lines can be obtained when the modulation signal comprises n frequency components including the fundamental frequency and the odd harmonic frequencies, and 2n+1 equal-amplitude spectral lines can be obtained when the modulation signal comprises n frequency components including the fundamental frequency and the even harmonic frequencies. Then, we numerically simulate the spectra of 5, 7, 9, and 11 equal-amplitude spectral lines, respectively, which are also obtained in experiments with frequency separation of 30 MHz and flatness of better than 0.3 dB.

© 2010 Chinese Optics Letters

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(260.0260) Physical optics : Physical optics

Citation
Yuelan Lu, Yongwei Xing, and Yongkang Dong, "Equal-amplitude optical comb generation using multi-frequency phase modulation in optical fibers," Chin. Opt. Lett. 8, 316-319 (2010)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-8-3-316


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. D. Jemison, E. Funk, M. Bystrom, P. R. Herczfeld, I. Frigyes, and T. Berceli, in Proceedings of IEEE International Topical Meeting on Microwave Photonics 169(2001).
  2. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, Electron. Lett. 36, 2089 (2000).
  3. T. Healy, F. C. G. Gunning, A. D. Ellis, and J. D. Bull, Opt. Express 15, 2981 (2007).
  4. T. M. Ramond, L. Hollberg, P. W. Juodawlkis, and S. D. Calawa, Appl. Phys. Lett. 90, 171124 (2007).
  5. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, J. Lightwave Technol. 21, 2705(2003).
  6. T. Sakamoto, T. Kawanishi, and M. Izutsu, Opt. Lett. 31, 811 (2006).
  7. M. Kimura, K. Yasui, T. Nakagawa, and N. Ishii, Mathematical and Computer Modelling 38, 1304 (2003).
  8. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
  9. Z. Lu, Y. Dong, and Q. Li, Opt. Express 15, 1871 (2007).
  10. Y. Liu , Z. Lu, Y. Dong, and Q. Li, Chin. Opt. Lett. 7, 29 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited