OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 8, Iss. 5 — May. 1, 2010
  • pp: 471–473

Study on compensating methods of transmission system at 40 Gb/s in photonic crystal fiber

Jing Wang, Hongli Miao, Shiyan Song, and Ronger Zheng  »View Author Affiliations

Chinese Optics Letters, Vol. 8, Issue 5, pp. 471-473 (2010)

View Full Text Article

Acrobat PDF (335 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Two compensating methods about solitons transmition systems at 40 Gb/s in a photonic crystal fiber are investigated. The maximum transmission distance of the system is calculated numerically by sliding filters and synchronic modulation technology. The maximum transmission distance increases evidently which occasionally is three times longer than before. The results show that the actions of high order dispersion, polarization mode dispersion, and high order nonlinearity are weakened by the two methods. The compensating effect of synchronic modulation technology is better than that of the other one. The capability of the compensated system is ameliorated, which is shown by eye patterns.

© 2010 Chinese Optics Letters

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(190.0190) Nonlinear optics : Nonlinear optics

Jing Wang, Hongli Miao, Shiyan Song, and Ronger Zheng, "Study on compensating methods of transmission system at 40 Gb/s in photonic crystal fiber," Chin. Opt. Lett. 8, 471-473 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. N. Nishizawa, Y. Ito, and T. Goto, IEEE Photon. Technol. Lett. 14, 986 (2002).
  2. E. E. Serebryannikov, M.-L. Hu, Y.-F. Li, C.-Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, JETP Lett. 81, 487 (2005).
  3. J. Xia, D. Chen, L. Yang, J. Qiu, and C. Zhu, Laser Optoelectron. Prog. 42, (2) 8 (2005).
  4. D. R. Neill and J. Atai, Phys. Lett. A 367, 73 (2007).
  5. W. J. Wadsworth, J. C. Knight, A. Ortigosa -Blanch, J. Arriaga, E. Silvestre, and P. St. J. Rusell, Electron. Lett. 36, 53 (2000).
  6. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, Opt. Lett. 26, 358 (2001).
  7. K. Kurokawa, K. Tajima, K. Tsujikawa, K. Nakajima, T. Matsui, I. Sankawa, and T. Haibara, J. Lightwave Technol. 24, 32 (2006).
  8. H. Hasegawa, Y. Oikawa, and M. Nakazawa, Electron. Lett. 43, 119 (2007).
  9. A. Mecozzi, M. Midrio, and M. Romagnoli, Opt. Lett. 21, 402 (1996).
  10. Y. Kodama and S. Wabnitz, Opt. Lett. 19, 162 (1994).
  11. H. Kulota and M. Nakazawa, IEEE J. Quantum Electron 29, 2189 (1993).
  12. J. Wang, N. Lin, and B. Yang, Acta Photon. Sin. (in Chinese) 30, 832 (2001)
  13. J. Wang and H. Miao, Laser Technology (in Chinese) 26, 211 (2002).
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 1989).
  15. X. Yang and Y. Wen, Fundamental Theories of Optical Fiber Soliton Communications (National Defence Industry Press, Beijing, 2000) pp.198-225.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited