OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 8, Iss. 5 — May. 1, 2010
  • pp: 508–511

Microlens arrays prepared via colloidal microsphere templating

Feng Zhao, Mingwei Zhu, and Peng Zhan  »View Author Affiliations

Chinese Optics Letters, Vol. 8, Issue 5, pp. 508-511 (2010)

View Full Text Article

Acrobat PDF (825 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A simple and efficient templating method in combination with hot embossing technique is developed for fabricating large-area two-dimensional (2D) microlens arrays (MLAs) with uniform shape. By utilizing a modified microchannel method, a 2D large-area hexagonal close-packed (HCP) array of silica colloidal microspheres is prepared and serves as a template in the following hot embossing treatment to create a polycarbonate (PC) microcavity array. Then, with the obtained PC microcavity structure serving as a mold, a hot embossing process is applied to finally achieve a polymethylmethacrylate (PMMA) MLA. The effect of annealing time during the mold preparation process on the dimensions and shapes of the prepared microlens is investigated. The imaging performances of the prepared PC concave microcavities and PMMA convex microlenses are characterized by carrying out projection experiments. Our method provides a rapid and low cost approach to prepare large-area MLAs.

© 2010 Chinese Optics Letters

OCIS Codes
(080.3630) Geometric optics : Lenses
(110.3000) Imaging systems : Image quality assessment
(220.3620) Optical design and fabrication : Lens system design
(230.4000) Optical devices : Microstructure fabrication

Feng Zhao, Mingwei Zhu, and Peng Zhan, "Microlens arrays prepared via colloidal microsphere templating," Chin. Opt. Lett. 8, 508-511 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. Iga, Y. Kokubun, and M. Oikawa, Fundamentals of Microoptics (Academic Press, London, 1984).
  2. N. F. Borrelli, Microoptics Technology (Marcel Dekker, New York, 1999).
  3. H. Arimoto and B. Javidi, Opt. Lett. 26, 157 (2001).
  4. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, Appl. Opt. 43, 1355 (2004).
  5. C. Quan, S. H. Wang, C. J. Tay, L. Reading, and Z. P. Fang, Opt. Commun. 225, 223 (2003).
  6. J. Arai, H. Kawai, and F. Okano, Appl. Opt. 45, 9066 (2006).
  7. S. S. Sridharamurthy, L. Dong, and H. Jiang, Meas. Sci. Technol. 18, 201 (2007).
  8. J. K. Kim, J. Kim, K. Oh, L.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, IEEE Photon. Technol. Lett. 21, 21 (2009).
  9. C. J. Tang and Y. Jiang, Acta Opt. Sin. (in Chinese) 29, 1062 (2009).
  10. S. Gillet, P. Riaud, O. Lardiere, J. Dejonghe, J. Schmitt, L. Arnold, A. Boccaletti, D. Horville, and A. Labeyrie, Astron. Astrophys. 400, 393 (2003).
  11. Y.-P. Huang, H.-P. D. Shieh, and S.-T. Wu, Appl. Opt. 43, 3656 (2004).
  12. M. C. Hutley, J. Mod. Opt. 37, 253 (1990).
  13. T. Hirai and S. Hayashi, Colloids Surf. A 153, 503 (1999).
  14. C.-P. Lin, H. Yang, and C.-K. Chao, J. Micromech. Microeng. 13, 775 (2003).
  15. H. Yang, C.-K. Chao, C.-P. Lin, and S.-C. Shen, J. Micromech. Microeng. 14, 277 (2004).
  16. J.-H. Zhu, J.-X. Shi, Y. Wang, and P.-S. He, Chin. J. Chem. Phys. 19, 443 (2006).
  17. R. F. Shyu, H. Yang, W.-R. Tsai, and J.-C. Tsai, Microsyst. Technol. 13, 1601 (2007).
  18. C.-J. Ke, X.-J. Yi, J.-J. Lai, and S.-H. Chen, Chin. Phys. Lett. 22, 135 (2005).
  19. W. Wang and C. Zhou, Chinese J. Lasers (in Chinese) 36, 2869 (2009).
  20. X. C. Yuan, W. Yu, N. Ngo, and W. Cheong, Opt. Express 10, 303 (2002).
  21. J. J. Yang, C. F. Chen, and Y. S. Liao, Opt. Commun. 281, 474 (2008).
  22. H. A. Biebuyck and G. M. Whitesides, Langmuir 10, 2790 (1994).
  23. W. Moench and H. Zappe, J. Opt. A: Pure Appl. Opt. 6, 330 (2004).
  24. Z. Wang, Y. Ning, Y. Zhang, J. Shi, T. Li, J. Cui, G. Liu, X. Zhang, L. Qin, Y. Sun, Y. Liu, and L. Wang, Chinese J. Lasers (in Chinese) 36, 1963 (2009).
  25. Y. Fu and N. K. A. Bryan, Opt. Eng. 40, 1433 (2001).
  26. F. Beinhorn, J. Lhlemann, K. Luther, and J. Troe, Appl. Phys. A 68, 709 (1999).
  27. P. Jiang, J. F. Bertone, and V. L. Colvin, Science 291, 453 (2001).
  28. K. Piglmayer, R. Denk, and D. Bauerle, Appl. Phys. Lett. 80, 4693 (2002).
  29. M. Zhu, Y. Li, T. Meng, P. Zhan, J. Sun, J. Wu, Z. Wang, S. Zhu, and N. Ming, Langmuir 22, 7248 (2006).
  30. H. Yabu and M. Shimomura, Langmuir 21, 1709 (2005).
  31. Z. Chen, P. Zhan, Z. Wang, J. Zhang, W. Zhang, N. Ming, C. Chan, and P. Sheng, Adv. Mater. 16, 417 (2004).
  32. J. Sun, Y. Li, H. Dong, P. Zhan, C. Tang, M. Zhu, and Z. Wang, Adv. Mater. 20, 123 (2008).
  33. Z. Wang, H. Dong, Z. Chen, P. Zhan, W. Dong, J. Liu, and N. Min, "Preparation method of 2-D and 3-D colloidal crystal" (in Chinese) Chinese Patent 200410041939.9 (Sep. 10, 2004).
  34. M.-C. Chou, C. T. Pan, S. C. Shen, M.-F. Chen, K. L. Lin, and S.-T. Wu, Sens. Actuators A 118, 298 (2005).
  35. J. H. Teichroeb and J. A. Forrest, Phys. Rev. Lett. 91, 016104 (2003).
  36. S. A. Hutcheson and G. B. McKenna, Phys. Rev. Lett. 94, 076103 (2005).
  37. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (vol. III) (Addison Wesley Longman, Reading, 1970).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited