OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 8, Iss. 7 — Jul. 1, 2010
  • pp: 639–641

High-speed polarization mode dispersion measurement using digital polarization-state generators and Mueller matrix method

Junfeng Jiang, Tiegen Liu, Maochun Li, X. Steve Yao, and Kun Liu  »View Author Affiliations

Chinese Optics Letters, Vol. 8, Issue 7, pp. 639-641 (2010)

View Full Text Article

Acrobat PDF (253 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A polarization-mode dispersion (PMD) measurement system using a pair of polarization-state generators (PSGs) is demonstrated. Based on the saturation characteristics of magneto-optic rotators, the PSG can be digitally controlled, ensuring high-speed and highly repeatable generation of five distinct polarization states. Thus, the PSG can make full use of the advantage of the Mueller matrix method of PMD measurement. The experimental result shows that the system has good measurement repeatability and potential for field testing.

© 2010 Chinese Optics Letters

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2330) Fiber optics and optical communications : Fiber optics communications
(260.5430) Physical optics : Polarization

Junfeng Jiang, Tiegen Liu, Maochun Li, X. Steve Yao, and Kun Liu, "High-speed polarization mode dispersion measurement using digital polarization-state generators and Mueller matrix method," Chin. Opt. Lett. 8, 639-641 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. T. Wang, S. Lan, J. Jiang, and T. Liu, Chin. Opt. Lett. 6, 812 (2008).
  2. W. Xu, G. Duan, G. Fang, L. Xi, and X. Zhang, Acta Opt. Sin. (in Chinese) 28, 226 (2008).
  3. B. L. Heffner, IEEE Photon. Technol Lett. 4, 1066 (1992).
  4. C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, J. Lightwave Technol. 6, 1185 (1988).
  5. C. D. Poole and D. L. Favin, J. Lightwave Technol. 12, 917 (1994).
  6. N. Gisin, R. Passy, and J. P. Von der Weid, IEEE Photon. Technol. Lett. 6, 730 (1994).
  7. G. D. Van Wiggeren, A. R. Motamedi, and D. M. Baney, IEEE Photon. Technol. Lett. 15, 263 (2003).
  8. J. Jiang, S. Sundhararajan, D. Richards, S. Oliva, and R. Hui, Opt. Express 16, 14057 (2008)
  9. A. Galtarossa, G. Gianello, C. G. Someda, and M. Schiano, J. Lightwave Technol. 14, 42 (1996).
  10. R. M. Jopson, L. E. Nelson, and H. Kogelnik, IEEE Photon. Technol. Lett. 11, 1153 (1999).
  11. R. A. Chipman, in Handbook of Optics (2nd edn.) M. Bass, (ed.) (McGraw-Hill, New York, 1995) chap. 22.
  12. A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drevillon, Opt. Lett. 28, 616 (2003).
  13. R. Noe, B. Koch, V. Mirvoda, and D. Sandel, in Proceedings of Optical Fiber Communication Conference /National Fiber Optic Engineers Conference OThJ1 (2010).
  14. X. S. Yao, L. Yan, and Y. Shi, Opt. Lett. 30, 1324 (2005).
  15. X. S. Yao, X. Chen, and L. Yan, Opt. Lett. 31, 1948 (2006).
  16. R. Huber, D. C. Adler, and J. G. Fujimoto, Opt. Lett. 31, 2975 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited