OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Vol. 8, Iss. 7 — Jul. 1, 2010
  • pp: 697–700

Four-wave mixing model solutions for polarization control of terahertz pulse generated by a two-color laser field in air

Zheng Chu, Jinsong Liu, Kejia Wang, and Jianquan Yao  »View Author Affiliations


Chinese Optics Letters, Vol. 8, Issue 7, pp. 697-700 (2010)


View Full Text Article

Acrobat PDF (562 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A four-wave mixing (FWM) model is used to analyze the polarization control of terahertz (THz) pulse generated by a two-color laser field in air. The analytic formula for the THz intensity varying with the THz polarizer angle, and the relative phase between the two pulses, are obtained. The corresponding numerical results agree well with both numerical result obtained from a quantum model and measured data reported. Moreover, possible phenomena are predicted for variables not found in other experiments. Compared with the quantum model, the FWM model gives analytic formulas and clear physical pictures, and has the advantage of efficient computing time.

© 2010 Chinese Optics Letters

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6495) Spectroscopy : Spectroscopy, teraherz

Citation
Zheng Chu, Jinsong Liu, Kejia Wang, and Jianquan Yao, "Four-wave mixing model solutions for polarization control of terahertz pulse generated by a two-color laser field in air," Chin. Opt. Lett. 8, 697-700 (2010)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-8-7-697


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Q. Wu and X.-C. Zhang, Appl. Phy. Lett. 67, 3523 (1995).
  2. J. H. Booske, Physics of Plasmas 15, 055502 (2008).
  3. P. H. Siegel, IEEE Trans. Microw. Theor. Tech. 50, 910 (2002).
  4. Y. Zhang, Y. Chen, C. Marceau, W. Liu, Z. D. Sun, S. Xu, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, Opt. Express 16, 15483 (2008).
  5. Y. He, Y. Jiang, Y. Zhang, and G. Fan, Chin. Opt. Lett. 8, 162 (2010).
  6. D. J. Cook and R. M. Hochstrasser, Opt. Lett. 25, 1210 (2000).
  7. X. Xie, J. Dai, and X.-C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
  8. Y. Zhang, Y. Chen, S. Xu, H. Lian, M. Wang, W. Liu, S. L. Chin, and G. Mu, Opt. Lett. 34, 2841 (2009).
  9. N. Amer, W. C. Hurlbut, B. J. Norton, L. Yun-Shik, and T. B. Norris, Appl. Phys. Lett. 87, 221111 (2005).
  10. N. Karpowicz and X.-C. Zhang, Phys. Rev. Lett. 102, 093001 (2009).
  11. J. Dai, N. Karpowicz, and X.-C. Zhang, Phys. Rev. Lett. 103, 023001 (2009).
  12. H. Wen and A. M. Lindenberg, Phys. Rev. Lett. 103, 023902 (2009).
  13. A. Houard, Y. Liu, B. Prade, and A. Mysyrowicz, Opt. Lett. 33, 1195 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited