Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 8,
  • Issue 7,
  • pp. 706-708
  • (2010)

Properties of the 3D photonic nanojet based on the refractive index of surroundings

Not Accessible

Your library or personal account may give you access

Abstract

We exhibit a three-dimensional (3D) photonic nanojet based on a dielectric microsphere irradiated by a plane wave with the finite-difference time-domain (FDTD) method. We investigate the influence of the refractive index of the surrounding on the properties of the nanojet by simulating the electric field distributions in it. The simulation results show that, by optimally choosing the size of the sphere and the ratio of the refractive indices of the sphere and the surrounding, the focus point can occur just on the surface of the sphere even if the refractive index of the surrounding is changed. Additionally, the peak amplitude of the nanojet increases with increasing the refractive index of the surrounding. However, the decay length and the jet width of the nanojet decrease simultaneously. These effects may have potential applications in observation or manipulation of nano-objects such as antibodies in biology. In nanojet-enabled optical data storage, the photonic nanojet may be also helpful for improving data-storage capacities and retrieval speed by controlling the field amplitude, the decay length, and jet width of the nanojet.

© 2010 Chinese Optics Letters

PDF Article
More Like This
Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets

Xu Li, Zhigang Chen, Allen Taflove, and Vadim Backman
Opt. Express 13(2) 526-533 (2005)

On-fiber high-resolution photonic nanojets via high refractive index dielectrics

Wasem Aljuaid, Joseph Arnold Riley, Noel Healy, and Victor Pacheco-Peña
Opt. Express 30(24) 43678-43690 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.