OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 9, Iss. 1 — Jan. 10, 2011
  • pp: 010204–

Spectral fine structure of the atomic ground states based on full relativistic theory

Zhenghe Zhu and Yongjian Tang  »View Author Affiliations

Chinese Optics Letters, Vol. 9, Issue 1, pp. 010204- (2011)

View Full Text Article

Acrobat PDF (100 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible. Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.

© 2011 Chinese Optics Letters

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6320) Spectroscopy : Spectroscopy, high-resolution

Zhenghe Zhu and Yongjian Tang, "Spectral fine structure of the atomic ground states based on full relativistic theory," Chin. Opt. Lett. 9, 010204- (2011)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. G. Dyall, I. P. Grant, C. T. Johson, F. A. Parpia, and E. P. Plummer, Computer Phys. Commun. 55, 425 (1989).
  2. J. F. Cornwell, Group Theory in Physics (Academic Press, London, 1994).
  3. Z. Zhu, Atomic and Molecular Reaction Statics (in Chinese) (Science Press, Beijing, 2007).
  4. W. Luding and C. Falter, Symmetries in Physics (Springer, Heidelberg, 1996).
  5. M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964).
  6. T. Saue, K. Fagri, T. Helgaker, and O. Gropen, Mol. Phys. 91, 937 (1997).
  7. T. Saue and H. J. A. Jensen, J. Chem. Phys. 111, 6211 (1999).
  8. Z. H. Zhu, Sci. China Ser. G Phys. Mech. Astron. 50, 581 (2007).
  9. M. E. Rose, Relativistic Electron Theory (Wiley, New York, 1961).
  10. T. Saue and H. J. A. Jensen, J. Chem. Phys. 118, 522 (2003).
  11. H. Charlie, Introduction to Mathematical Physics (Prentice Hall, Englewood Cliffs, 1976).
  12. L. G. M. de Macedo, J. R. Sambrano, A. R. de Souza, and A. C. Borin, Chem. Phys. Lett. 440, 367 (2007).
  13. K. Balasubramanian and S. P. Kenneth, J. Phys. Chem. 87, 2087 (1983).
  14. J. C. Berengut, V. V. Flambaum, and M. G. Kozlov, Phys. Rev. A 73, 012504 (2006).
  15. T. Saue and T. Helgaker, J. Comput. Chem. 23, 814 (2002).
  16. J. Bieron, C. F. Fischer, P. Indelicato, P. Jonsson, and P. Pyykko, Phys. Rev. A 79, 052502 (2009).
  17. T. Fleig and L. Visscher, Chem. Phys. 311, 113 (2005).
  18. H. J. A. Jensen, T. Saue, and L. Visscher, "DIRAC, a relativistic ab initio electronic structure program, release DIRAC08" (2008).
  19. S. Yamamoto and S. Saito, J. Astrophys. 370, L103 (1991).
  20. C. E. Moore, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 3 (1975) Sect.5.
  21. D. C. Morton, J. Astrophys. Suppl. Ser. 149, 205 (2003).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited