OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Vol. 9, Iss. 1 — Jan. 10, 2011
  • pp: 011001–

Point pattern matching based on kernel partial least squares

Weidong Yan, Zheng Tian, Lulu Pan, and Jinhuan Wen  »View Author Affiliations


Chinese Optics Letters, Vol. 9, Issue 1, pp. 011001- (2011)


View Full Text Article

Acrobat PDF (916 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Point pattern matching is an essential step in many image processing applications. This letter investigates the spectral approaches of point pattern matching, and presents a spectral feature matching algorithm based on kernel partial least squares (KPLS). Given the feature points of two images, we define position similarity matrices for the reference and sensed images, and extract the pattern vectors from the matrices using KPLS, which indicate the geometric distribution and the inner relationships of the feature points. Feature points matching are done using the bipartite graph matching method. Experiments conducted on both synthetic and real-world data demonstrate the robustness and invariance of the algorithm.

© 2011 Chinese Optics Letters

OCIS Codes
(100.0100) Image processing : Image processing
(100.2000) Image processing : Digital image processing

Citation
Weidong Yan, Zheng Tian, Lulu Pan, and Jinhuan Wen, "Point pattern matching based on kernel partial least squares," Chin. Opt. Lett. 9, 011001- (2011)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-9-1-011001


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. S. Cox and G. De Jager, in Proceedings of South African Symposium on Communications and Signal Processing 243 (1993).
  2. H. Guo, A. Rangarajan, and S. Joshi, "Diffeomorphic point matching" in Handbook of Mathematical Models in Computer Vision (Springer, Heidelberg, 2005) pp.205~220.
  3. J. You and P. Bhattacharya, IEEE Trans. Image Process. 9, 1547 (2000).
  4. P. Dare and I. Dowman, ISPRS J. Photogramm. Remote Sens. 56, 13 (2001).
  5. F. R. K. Chung, Spectral Graph Theory (American Mathematical Society, Providance, 1997).
  6. M. Carcassoni and E. R. Hancock, Pattern Recognition 36, 193 (2003).
  7. G. L. Scott and H. C. Longuet-Higgins, Proc. R. Soc. Lond. B 244, 21 (1991).
  8. L. S. Shapiro and J. M. Brady, Image and Vision Computing 10, 283 (1992).
  9. H. Wang and E. R. Hancock, LNCS 3138, 361 (2004).
  10. V. Jain and H. Zhang, in Proceedings of 2006 IEEE International Conference on Shape Modeling and Applications 118 (2006).
  11. S. Wold, A. Ruhe, H. Wold, and W. J. Dunn III, SIAM J. Sci. Stat. Comput. 5, 735 (1984).
  12. D. V. Nguyen and D. M. Rocke, Bioinformatics 18, 39 (2002).
  13. Q.-S. Sun, Z. Jin, P.-A. Heng, and D.-S. Xia, LNCS 3686, 268 (2005).
  14. M. Barker and W. Rayens, J. Chemometrics 17, 166 (2003).
  15. A. Hoskuldsson, J. Chemometrics 2, 211 (1988).
  16. R. Rosipal and L. J. Trejo, Machine Learning Res. 2, 97 (2002).
  17. W. Yan, Z. Tian, L. Pan, and M. Ding, Chin. Opt. Lett. 7, 201 (2009).
  18. P. J. Besl and N. D. McKay, IEEE Trans. Pattern Anal. Mach. Intell. 14, 239 (1992).
  19. T. Jebara and V. Shchogolev, LNAI 4212, 679 (2006).
  20. T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola, IEEE Trans. Pattern Anal. Mach. Intell. 31, 1048 (2009).
  21. C. Leng, Z. Tian, J. Li, and M. Ding, Chin. Opt. Lett. 7, 996 (2009).
  22. S.-H. Chang, F.-H. Cheng, W.-H. Hsu, and G.-Z. Wu, Pattern Recognition 30, 311 (1997).
  23. Y. Wang, F. Makedon, and J. Ford, in Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2, 2972 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited