OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 9, Iss. 1 — Jan. 10, 2011
  • pp: 011401–

Computational fluid dynamic modeling of gas flow characteristics of the high-power CW CO2 laser

Hongyan Huang and Youqing Wang  »View Author Affiliations

Chinese Optics Letters, Vol. 9, Issue 1, pp. 011401- (2011)

View Full Text Article

Acrobat PDF (499 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


To increase the photoelectronic conversion efficiency of the single discharge tube and to meet the requirements of the laser cutting system, optimization of the discharge tube structure and gas flow field is necessary. We present a computational fluid dynamic model to predict the gas flow characteristics of high-power fast-axial flow CO2 laser. A set of differential equations is used to describe the operation of the laser. Gas flow characteristics, are calculated. The effects of gas velocity and turbulence intensity on discharge stability are studied. Computational results are compared with experimental values, and a good agreement is observed. The method presented and the results obtained can make the design process more efficient.

© 2011 Chinese Optics Letters

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(140.3425) Lasers and laser optics : Laser stabilization

Hongyan Huang and Youqing Wang, "Computational fluid dynamic modeling of gas flow characteristics of the high-power CW CO2 laser," Chin. Opt. Lett. 9, 011401- (2011)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. E. Beverly, Opt. Quantum Electron. 14, 25 (1982).
  2. S. Muller and J. Uhlenbusch, J. Phys. D: Appl. Phys. 20, 697 (1987).
  3. M. G. Baeva and P. A. Atanasov, J. Phys. D: Appl. Phys. 26, 546 (1993).
  4. R. Rudolph, A. Harendt, P. Bisin, and H. Gundel, J. Appl. Phys. 26, 552 (1993).
  5. S. Sazhin, P. Wild, C. Leys, D. Toebaert, and E. Sazhina, J. Appl. Phys. 26, 1872 (1993).
  6. S. Sazhin, P. Wild, F. Sazhin, D. Toebaert, and E. Sazhina, J. Phys. D: Appl. Phys. 27, 464 (1994).
  7. S. Al-Hawat and K. Al-Mutaib, Opt. Laser Technol. 39, 610 (2007).
  8. S. Jelvani and H. Saeedi, Opt. Laser Technol. 40, 459 (2008).
  9. S. Sazhin, P. Wild, D. E. Sazhina, M. Makhlouf, C. Leys, and D. Toebaert, Opt. Laser Technol. 26, 191 (1994).
  10. W. J. Wiegand and W. L. Nighan, Appl. Phys. Lett. 26, 554 (1975).
  11. S. A. Buyarov, V. D. Dubrov, M. G. Galushkin, V. S. Golubev, R. V. Grishayev, A. A. Ionin, A. A. Kotkov, V. Y. Panchenko, and Y. N. Zavalov, in Proceedings of Seventh International Conference on Laser and Laser-Information Technologies 176 (2001).
  12. M. G. Galushkin, V. S. Golubev, Yu. N. Zavalov, V. D. Dubrov, R. V. Grishaev, and S. A. Buyarov, in Proceedings of XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers 469 (2004).
  13. G. Vlad, O. Boiron, G. Paleec, and P. Bournot, in Proceedings of Gas Flow and Chemical Lasers: Tenth International Symposium 565 (1994).
  14. Q. Li and Y. Wang, Chin. Opt. Lett. 6, 513 (2008).
  15. V. V. Nevdakh, Proc. SPIE 6731, 67311F (2007).
  16. M. Qiu, J. Hu, and Z. Yao, Chinese J. Lasers (in Chinese) 36, 1296 (2009).
  17. H. Ruan, J. Lu, B. Yang, X. Wang, and H. Liu, Chinese J. Lasers (in Chinese) 36, 1233 (2009).
  18. P. Lu and R. Wang, Chinese J. Lasers (in Chinese) 28, 775 (2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited