OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Vol. 9, Iss. 1 — Jan. 10, 2011
  • pp: 011401–

Computational fluid dynamic modeling of gas flow characteristics of the high-power CW CO2 laser

Hongyan Huang and Youqing Wang  »View Author Affiliations


Chinese Optics Letters, Vol. 9, Issue 1, pp. 011401- (2011)


View Full Text Article

Acrobat PDF (499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

To increase the photoelectronic conversion efficiency of the single discharge tube and to meet the requirements of the laser cutting system, optimization of the discharge tube structure and gas flow field is necessary. We present a computational fluid dynamic model to predict the gas flow characteristics of high-power fast-axial flow CO2 laser. A set of differential equations is used to describe the operation of the laser. Gas flow characteristics, are calculated. The effects of gas velocity and turbulence intensity on discharge stability are studied. Computational results are compared with experimental values, and a good agreement is observed. The method presented and the results obtained can make the design process more efficient.

© 2011 Chinese Optics Letters

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(140.3425) Lasers and laser optics : Laser stabilization

Citation
Hongyan Huang and Youqing Wang, "Computational fluid dynamic modeling of gas flow characteristics of the high-power CW CO2 laser," Chin. Opt. Lett. 9, 011401- (2011)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-9-1-011401

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited