OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 9, Iss. 10 — Oct. 10, 2011
  • pp: 100401–

Theoretical optimization of the characteristics of ZnO metal-semiconductor-metal photodetectors

Ghania Harzallah and Mohamed Remram  »View Author Affiliations

Chinese Optics Letters, Vol. 9, Issue 10, pp. 100401- (2011)

View Full Text Article

Acrobat PDF (491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A two-dimensional model of a metal-semiconductor-metal (MSM) ZnO-based photodetector (PD) is developed. The PD is based on a drift diffusion model of a semiconductor that allows the calculation of potential distribution inside the structure, the transversal and longitudinal distributions of the electric field, and the distribution of carrier concentration. The ohmicity of the contact has been confirmed. The dark current of MSM PD based ZnO for different structural dimensions are likewise calculated. The calculations are comparable with the experimental results. Therefore, the influence with respect to parameters s (finger spacing) and w (finger width) is studied, which results in the optimization of these parameters. The best optimization found to concur with the experimental results is s = 16 \mu m, w = 16 \mu m, l = 250 \mu m, L = 350 \mu m, where l is the finger length and L is the length of the structure. This optimization provides a simulated dark current equal to 24.5 nA at the polarization of 3 V.

© 2011 Chinese Optics Letters

OCIS Codes
(040.5160) Detectors : Photodetectors
(160.6000) Materials : Semiconductor materials
(250.0250) Optoelectronics : Optoelectronics

Ghania Harzallah and Mohamed Remram, "Theoretical optimization of the characteristics of ZnO metal-semiconductor-metal photodetectors," Chin. Opt. Lett. 9, 100401- (2011)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. Litvin, J. Burm, D. Woodard, W. Schaff, and L. F. Eastman, in Proceedings of IEEE MTT-S Dig. 2, 1063 (1993).
  2. S. Y. Chou and M. Y. Liu, IEEE J. Quantum Electron. 28, 2358 (1992).
  3. L. K. Wang, Z. G. Ju, C. X. Shan, J. Zheng, D. Z. Shen, B. Yao, D. X. Zhao, Z. Z. Zhang, B. H. Li, and J. Y. Zhang, Solid State Commun. 149, 2021 (2009).
  4. L. Lai and C. Lee, Mater. Chem. Phys. 110, 393 (2008).
  5. M. Ahmad, C. Pan, J. Zhao, J. Iqbal, and J. Zhu, Mater. Chem. Phys. 120, 319 (2010).
  6. T. K. Lin, S. J. Chang, Y. K. Su, B. R. Huang, M. Fujita, and Y. Horikoshi, J. Crys. Growth 281, 513 (2005).
  7. S. J. Young, L. W. Ji, S. J. Chang, and Y. K. Su, J. Crys. Growth 293, 43 (2006).
  8. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Crys. Growth 225, 110 (2001).
  9. D. Jiang, J. Zhang, Y. Lu, K. Liu, D. Zhao, Z. Zhang, D. Shen, and X. Fan, Solid State Electron. 52, 679 (2008).
  10. Z. Xu, H. Deng, J. Xie, Y. Li, and X. Zu, Appl. Surf. Sci. 253, 476 (2006).
  11. S. J. Young, L. W. Ji, T. H. Fang, S. J. Chang, Y. K. Su, and X. L. Du, Acta Mater. 55, 329 (2007).
  12. G. Guarino, W. R. Donaldson, M. Mikulics, M. Marso, P. Kordo?s, and R. Sobolewski, Solid State Electron. 53, 1144 (2009).
  13. J. Zhang, Y. Yang, L. Lou, and Y. Zhao, Chin. Opt. Lett. 6, 615 (2008).
  14. G. Harzallah, M. Remram, and A. Nehhas, in Proceedings of 6th Symposium SiO2, Advanced Dielectrics and Related Devices (2006).
  15. G. Harzallah and M. Remram, Mat'eriaux 13 (2006).
  16. W. S. Han, Y. Y. Kim, B. H. Kong, and H. K. Cho, Thin Solid Films 517, 5106 (2009).
  17. S. P. Chang, S. J. Chang, Y. Z. Chou, C. Y. Lu. Y. C. Lin, C. F. Kuo, and H. M. Chang, Sensor Actuat A-Phys. 140, 60 (2007).
  18. K. W. Liu, J. G. Ma, J. Y. Zhang, Y. M. Lu, D. Y. Jiang, B. H. Li, D. X. Zhao, Z. Z. Zhang, B. Yao, and D. Z. Shen, Solid State Electron. 51, 757 (2007).
  19. H. Kim and J. Lee, Superlattice Microst. 42, 255 (2007).
  20. J. H. Kim, J. Y. Moon, H. S. Lee, W. S. Han, H. K. Cho, J. Y. Lee, and H. S. Kim, Mater. Sci. Eng. B 165, 77 (2009).
  21. D. Decoster and J. Harari, Detecteur Opto'electronique (Hermes Science, Lavoisier, 2002).
  22. H. Mathieu, Physique Des Semiconducteurs et Des Composants Electroniques (Dunod, Paris, 2001).
  23. S. Averine, O. Bondarenko, and R. Sachot, Solid State Electron. 46, 2045 (2002).
  24. A. M. Nahhas, Elektrika 10, 1 (2008).
  25. Y. Dong and L. J. Brillson, J. Electron. Mater. 37, 743 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited