OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Editor: Zhizhan Xu
  • Vol. 9, Iss. 11 — Nov. 1, 2011
  • pp: 110006–

Applications of time-resolved terahertz spectroscopy in ultrafast carrier dynamics (Invited Paper)

Qingli Zhou and Xicheng Zhang  »View Author Affiliations


Chinese Optics Letters, Vol. 9, Issue 11, pp. 110006- (2011)


View Full Text Article

Acrobat PDF (347 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Three time-resolved terahertz (THz) spectroscopy methods (optical-pump/THz-probe spectroscopy, THz-pump/THz-probe spectroscopy, and THz-pump/optical-probe spectroscopy) are reviewed. These are used to characterize ultrafast dynamics in photo- or THz-excited semiconductors, superconductors, nanomaterials, and other materials. In particular, the optical-pump/THz-probe spectroscopy is utilized to investigate carrier dynamics and the related intervalley scattering phenomena in semiconductors. The recent development of intense pulsed THz sources is expected to affect the research in nonlinear THz responses of various materials.

© 2011 Chinese Optics Letters

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy, imaging, and sensing using terahertz radiation

Citation
Qingli Zhou and Xicheng Zhang, "Applications of time-resolved terahertz spectroscopy in ultrafast carrier dynamics (Invited Paper)," Chin. Opt. Lett. 9, 110006- (2011)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-9-11-110006


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Grischkowsky, S. R. Keiding, M. van Exter, and C. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).
  2. Q. Wu and X. Zhang, Appl. Phys. Lett. 67, 3523 (1995).
  3. R. D. Averitt and A. J. Taylor, J. Phys.: Condens. Matter 14, R1357 (2002).
  4. M. Schall and P. U. Jepsen, Opt. Lett. 25, 13 (2000).
  5. S. E. Ralph, Y. Chen, J. Woodall, and D. McInturff, Phys. Rev. B 54, 5568 (1996).
  6. S. S. Prabhu, S. E. Ralph, M. R. Melloch, and E. S. Harmon, Appl. Phys. Lett. 70, 2419 (1997).
  7. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, Phys. Rev. B 62, 15764 (2000).
  8. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, Opt. Express 15, 4577 (2007).
  9. X. Xie, J. Dai, and X. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
  10. J. Dai, X. Xie, and X. Zhang, Phys. Rev. Lett. 97, 103903 (2006).
  11. H. Wen, M. Wiczer, and A. M. Lindenberg, Phys. Rev. B 78, 125203 (2008).
  12. K. P. H. Liu and F. A. Hegmann, Appl. Phys. Lett. 78, 3478 (2001).
  13. J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, Appl. Phys. Lett. 89, 232102 (2006).
  14. Q. Zhou, Y. Shi, B. Jin, and C. Zhang, Appl. Phys. Lett. 93, 102103 (2008).
  15. L. Fekete, P. Kuzel, H. Nemec, F. Kadlec, A. Dejneka, J. Stuchl'?k, and A. Fejfar, Phys. Rev. B 79, 115306 (2009).
  16. P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, Nano Lett. 7, 2162 (2007).
  17. P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, Nano Lett. 8, 4248 (2008).
  18. J. H. Strait, P. A. George, M. Levendorf, M. Blood-Forsythe, F. Rana, and J. Park, Nano Lett. 9, 2967 (2009).
  19. H. Nemec, H.-K. Nienhuys, F. Zhang, O. Inganas, A. Yartsev, and V. Sundstrom, J. Phys. Chem. C 112, 6558 (2008).
  20. P. D. Cunningham, L. M. Hayden, H.-L. Yip, and A. K.-Y. Jen, J. Phys. Chem. B 113, 15427 (2009).
  21. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, J. Appl. Phys. 90, 5915 (2001).
  22. M. C. Beard, G. M. Turner, J. E. Murphy, O. I. Micic, M. C. Hanna, A. J. Nozik, and C. A. Schmuttenmaer, Nano Lett. 3, 1695 (2003).
  23. J. B. Baxter and C. A. Schmuttenmaer, J. Phys. Chem. B 110, 25229 (2006).
  24. C. Richter and C. A. Schmuttenmaer, Nat. Nanotechnol. 5, 769 (2010).
  25. D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Ma, X. Wang, Z. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, Appl. Phys. Lett. 85, 3839 (2004).
  26. D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, Appl. Phys. Lett. 89, 122103 (2006).
  27. D. G. Cooke, A. N. MacDonald, A. Hryciw, A. Meldrum, J. Wang, Q. Li, and F. A. Hegmann, J. Mater. Sci.: Mater. Electron 18, S447 (2007).
  28. F. H. Su, F. Blanchard, G. Sharma, L. Razzari, A. Ayesheshim, T. L. Cocker, L. V. Titova, T. Ozaki, J. C. Kieffer, R. Morandotti, M. Reid, and F. A. Hegmann, Opt. Express 17, 9620 (2009).
  29. P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M. Birkholz, K. Lips, and M. Schall, Appl. Phys. Lett. 79, 1291 (2001).
  30. H. P. Porte, P. UhdJepsen, N. Daghestani, E. U. Rafailov, and D. Turchinovich, Appl. Phys. Lett. 94, 262104 (2009).
  31. R. D. Averitt, A. I. Lobad, C. Kwon, S. A. Trugman, V. K. Thorsm?lle, and A. J. Taylor, Phys. Rev. Lett. 87, 017401 (2001).
  32. R. D. Averitt, G. Rodriguez, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, J. Opt. Soc. Am. B 17, 327 (2000).
  33. R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, Phys. Rev. B 63, 140502(R) (2001).
  34. J. Demsar, R. D. Averitt, A. J. Taylor, W.-N Kang, H. J. Kim, E.-M. Choi, and S.-I. Lee, Int. J. Mod. Phys. B 17, 3675 (2003).
  35. J. Demsar, R. D. Averitt, and A. J. Taylor, J. Supercond. Nov. Magn. 17, 143 (2004).
  36. J. Kitagawa, Y. Kadoya, M. Tsubota, F. Iga, and T. Takabatake, J. Phys.: Condens. Matter 19, 406224 (2007).
  37. J. Hebling, K. Yeh, M. C. Hoffmann, and K. A. Nelson, IEEE J. Sel. Top. Quantum Electron. 14, 345 (2008).
  38. M. C. Hoffmann and J. A. Fulop, J. Phys. D: Appl. Phys. 44, 083001 (2011).
  39. J. A. Fulop, L. P'alfalvi, G. Alm'asi, and J. Hebling, J. Infrared Millim. Terahertz Waves 32, 553 (2011).
  40. P. Gaal, W. Kuehn, K. Reimann, M. Woerner, T. Elsaesser, and R. Hey, Nature 450, 1210 (2007).
  41. P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, Phys. Rev. Lett. 96, 187402 (2006).
  42. P. Gaal, W. Kuehn, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, J. S. Lee, and U. Schade, Phys. Rev. B 77, 235204 (2008).
  43. W. Kuehn, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, and R. Hey, Phys. Rev. B 82, 075204 (2010).
  44. M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, Phys. Rev. B 79, 161201 (2009).
  45. M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, J. Opt. Soc. Am. B 26, A29 (2009).
  46. J. Hebling, M. C. Hoffmann, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, Phys. Rev. B 81, 035201 (2010).
  47. J. R. Danielson, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, and S. W. Koch, Phys. Rev. Lett. 99, 237401 (2007).
  48. A. D. Jameson, J. L. Tomaino, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, and S. W. Koch, Appl. Phys. Lett. 95, 201107 (2009).
  49. J. L. Tomaino, A. D. Jameson, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, and S. W. Koch, Solid State Electron. 54, 1125 (2010).
  50. H. Hirori, M. Nagai, and K. Tanaka, Phys. Rev. B 81, 081305(R) (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited