OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Editor: Zhizhan Xu
  • Vol. 9, Iss. 11 — Nov. 1, 2011
  • pp: 110007–

Terahertz electromagnetic waves emitted from semiconductor investigated using terahertz time domain spectroscopy (Invited Paper)

Yiming Zhu and Songlin Zhuang  »View Author Affiliations


Chinese Optics Letters, Vol. 9, Issue 11, pp. 110007- (2011)


View Full Text Article

Acrobat PDF (836 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Ultrafast electromagnetic waves radiated from semiconductor material under high electric fields and photoexcited by femtosecond laser pulses have been recorded by using terahertz time domain spectroscopy (THz-TDS). The waveforms of these electromagnetic waves reflect the dynamics of the photoexcited carriers in the semiconductor material, thus, THz-TDS provides a unique opportunity to observe directly the temporal and spatial evolutions of non-equilibrium transport of carriers within sub-picosecond time scale. We report on the observed THz emission waveforms emitted from GaAs by using a novel technology, the time domain THz electro-optic (EO) sampling, which has a bipolar feature, i.e., an initial positive peak and a subsequent negative dip that arises from its velocity overshoot. The initial positive peak has been interpreted as electron acceleration in the bottom of Γ valley in GaAs, where electrons have a light effective mass. The subsequent negative dip has been attributed to intervalley transfer from Γ to X and L valleys. Furthermore, the power dissipation spectra of the bulk GaAs in THz range are also investigated by using the Fourier transformation of the time domain THz traces. From the power dissipation spectra, the cutoff frequency for negative power dissipation (i.e., gain) under step electric field in the bulk GaAs can also be obtained. The cutoff frequency for the gain gradually increases with increasing electric fields up to 50 kV/cm and achieves saturation at approximately 1 THz at 300 K. Furthermore, based on the temperature dependence of the cutoff frequency, we find that this cutoff frequency is governed by the energy relaxation process of electrons from L to Γ valley via successive optical phonon emission.

© 2011 Chinese Optics Letters

OCIS Codes
(160.6000) Materials : Semiconductor materials
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy, imaging, and sensing using terahertz radiation

Citation
Yiming Zhu and Songlin Zhuang, "Terahertz electromagnetic waves emitted from semiconductor investigated using terahertz time domain spectroscopy (Invited Paper)," Chin. Opt. Lett. 9, 110007- (2011)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-9-11-110007


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Y. Yamashita, A. Endoh, K. Shinohara, K. Hikosaka, T. Matsui, S. Hiyamizu, and T. Mimura, IEEE Electron. Dev. Lett. 23, 573 (2002).
  2. J. B. Gunn and C. A. Hogarth, J. Appl. Phyics 26, 353 (1955).
  3. P. J. Bulman, G. S. Hobson, and B. C. Taylor, Transferred Electron Devices (Academic Press, London and New York, 1972).
  4. P. Das and R. Bharat, Appl. Phys. Lett. 11, 386 (1967).
  5. A. F. Gibson, T. W. Granville, and E. G. S. Paige, J. Phys. Chem. Solid 19, 198 (1961).
  6. R. Kamoua, H. Eisele, and G. I. Haddad, Solid State Electron. 36, 1547 (1993).
  7. M. F. Zybura, S. H. Jones, B. W. Lim, J. D. Crowley, and J. E. Carlstrom, Solid State Electron. 39, 547 (1996).
  8. C. Benz and J. Freyer, Electron. Lett. 34, 2351 (1998).
  9. Z. Chu, J. Liu, and K. Wang, Chin. Opt. Lett. 8, 697 (2010).
  10. L. Miao, D. Zuo, and Z. Jiu, Chin. Opt. Lett. 8, 411 (2010).
  11. P. Zhou and D. Fan, Chin. Opt. Lett. 9, 051902 (2011).
  12. A. Leitenstrofer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, Phys. Rev. Lett. 82, 5140 (1999).
  13. A. Leitenstrofer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, Phys. Rev. B. 61, 16642 (2000).
  14. Y. Shimada, K. Hirakawa, M. Odnoblioudov, and K. A. Chao, Phys. Rev. Lett. 90, 46806 (2003).
  15. Y. M. Zhu, T. Unuma, K. Shibata, and K. Hirakawa, Appl. Phys. Lett. 93, 042116 (2008).
  16. Y. M. Zhu, T. Unuma, K. Shibata, and K. Hirakawa, Appl. Phys. Lett. 93, 232102 (2008).
  17. Y. M. Zhu, X. X. Jia, L. Chen, D. W. Zhang, Y. S. Huang, B. Y. He, S. L. Zhuang, and K. Hirakawa, Acta Phys. Sin. (in Chinese) 58, 2692 (2009).
  18. P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach, J. Opt. Soc. Am. B 18, 313 (2001).
  19. Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).
  20. Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 70, 1784 (1997).
  21. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, Appl. Phys. Lett. 74, 1516 (1999).
  22. N. Sekine and K. Hirakawa, Phys. Rev. Lett. 94, 057408 (2005).
  23. E. M. Vartianen, K.-E. Peiponen, and T. Asakura, Appl. Spectrosc. 50, 1283 (1996).
  24. E. M. Vartiainen, Y. Ino, R. Shimano, M. Kuwata-Gonokami, Y. P. Svirko, and K.-E. Peiponen, J. Appl. Phys. 96, 4171 (2004).
  25. E. Gornov, E. M. Vartiainen, and K.-E. Peiponen, Appl. Opt. 45, 6519 (2006).
  26. M. V. Fischetti, IEEE Trans. Electron. Dev. 38, 634 (1991).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited