OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Editor: Zhizhan Xu
  • Vol. 9, Iss. 11 — Nov. 1, 2011
  • pp: 110011–

Modeling the THz spectrum of the bentazon

Huali Wang and Qiang Wang  »View Author Affiliations

Chinese Optics Letters, Vol. 9, Issue 11, pp. 110011- (2011)

View Full Text Article

Acrobat PDF (427 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Terahertz (THz) spectra of bentazon are determined within the range of 0.3-2.4 THz at room temperature. Density functional methods are used to compute the THz spectra using three different programs: Gaussian03 for isolated-molecule form, DMol3 and CRYSTAL09 for solid-state forms. Among the three, the computed THz spectrum of CRYSTAL09 shows better bond length and angle agreements with X-ray experimental results, and corresponds with observed THz experiment spectral characteristics. The isolated-molecule vibrational mode values are less by half than those derived from solid-state calculations. The last five peak positions of the two solid-state computations coincide with each other. Moreover, all the experimental THz absorption peaks are assigned by utilizing CRYSTAL09.

© 2011 Chinese Optics Letters

OCIS Codes
(300.1030) Spectroscopy : Absorption
(000.2658) General : Fundamental tests
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy, imaging, and sensing using terahertz radiation

Huali Wang and Qiang Wang, "Modeling the THz spectrum of the bentazon," Chin. Opt. Lett. 9, 110011- (2011)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. Gu, Z. Tian, Q. Xing, C. Wang, Y. Li, F. Li, L. Chai, and C. Wang, Chin. Opt. Lett. 8, 1057 (2010).
  2. Y. He, Y. Jiang, Y. Zhang, and G. Fan, Chin. Opt. Lett. 8, 162 (2010).
  3. Y. F. Hua, H. J. Zhang, and H. L. Zhou, IEEE Trans. Instrum. Meas. 59, 1414 (2010).
  4. S. Wietzke, C. Jansena, F. Rutz, D. M. Mittleman, and M. Koch, Polym. Test. 26, 614 (2007).
  5. H.-B. Liu, Y.-Q. Chen, G. J. Bastiaans, and X.-C. Zhang, Opt. Express 14, 415 (2006).
  6. Y. Zhang, X.-H. Peng, Y. Chen, J. Chen, A. Curioni, W. Andreoni, S. K. Nayak, and X.-C. Zhang, Chem. Phys. Lett. 452, 59 (2008).
  7. D. G. Allis, D. A. Prokhorova, and T. M. Korter, J. Phys. Chem. A 110, 1951 (2006).
  8. M. D. King, P. M. Hakey, and T. M. Korter, J. Phys. Chem. A 114, 2945 (2010).
  9. T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, J. Opt. Soc. Am. A 18, 1562 (2001).
  10. L. Duvillaret, F. Garet, and J.-L. Coutaz, IEEE J. Sel. Top. Quantum Electron. 2, 739 (1996).
  11. L. Duvillaret, F. Garet, and J.-L. Coutaz, Appl. Opt. 38, 409 (1999).
  12. M. J. Frisch, G. W. Trucks, and H. B. Schlegel, Gaussian 03 (Revision9C. 02 Gaussian, Inc.) (Wallingford, CT, 2003).
  13. R. Dovesi, V. R. Saunders, and C. Roetti, Crystal09 User's Manual (University of Torino, Torino, 2009).
  14. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
  15. P. J. Stephens, F. J. Devlin, C. F. Chabolowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
  16. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta. 28, 213 (1973).
  17. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
  18. L. E. Moss, B. A. Karcher, J. W. Richardson, and B. A. Jawbson, Acta. Crys. C 42, 1785 (1986).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited