OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Editor: Zhizhan Xu
  • Vol. 9, Iss. 11 — Nov. 1, 2011
  • pp: 111301–

Influence of GaAs substrate on the transmission performance of epitaxially grown Fabry-Peerot f ilter

Wei Wang, Yongqing Huang, Xiaofeng Duan, Qiang Yan, Xiaomin Ren, Shiwei Cai, Jingwei Guo, and Hui Huang  »View Author Affiliations

Chinese Optics Letters, Vol. 9, Issue 11, pp. 111301- (2011)

View Full Text Article

Acrobat PDF (485 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The influence of GaAs substrate on the transmission performance of a multi-film Fabry-Peerot filter (FPF), fabricated by metalorganic chemical vapor deposition epitaxial growth on GaAs substrate, is investigated using the transfer matrix method. On the basis of the theoretical simulation, we determine that the quality of the resonant transmission peak of this epitaxially grown FPF (EG-FPF) deteriorates through splitting when the substrate is taken into account. Rapid periodic oscillation of peak-transmittivity along with the alteration of substrate thickness is also observed in the simulation results. Finally, a remarkably improved transmission performance of the EG-FPF is obtained by thinning the substrate down to a suitable thickness range through well-controlled grinding and polishing.

© 2011 Chinese Optics Letters

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(230.1480) Optical devices : Bragg reflectors
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Integrated Optics

Wei Wang, Yongqing Huang, Xiaofeng Duan, Qiang Yan, Xiaomin Ren, Shiwei Cai, Jingwei Guo, and Hui Huang, "Influence of GaAs substrate on the transmission performance of epitaxially grown Fabry-Peerot f ilter," Chin. Opt. Lett. 9, 111301- (2011)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. V. Kotlyar, L. O'Faolain, A. B. Krysa, and T. F. Krauss, J. Lightwave Technol. 23, 2169 (2005).
  2. H. Gao, S. Yuan, L. Bo, G. Li, J. Zhang, G. Kai, and X. Dong, J. Lightwave Technol. 26, 2282 (2008).
  3. D. Hays, A. Zribi, S. Chandrasekaran, S. Goravar, S. Maity, L. R. Douglas, K. Hsu, and A. Banerjee, J. Microelectromech. Syst. 19, 419 (2010).
  4. W. Ren, P. Tao, Z. Tan, Y. Liu, and S. Jian, Chin. Opt. Lett. 7, 775 (2009).
  5. H. Kim, J. Joo, J. Choi, B. Jun, and C. Kim, IEEE Trans. Appl. Supercond. 15, 2767 (2005).
  6. S. P. Tobin, S. M. Vernon, C. Bajgar, S. J. Wojtczuk, M. R. Melloch, A. Keshavarzi, T. B. Stellwag, S. Venkatensan, M. S. Lundstrom, and K. A. Emery, IEEE Trans. Electron. Dev. 37, 469 (1990).
  7. P. Li, L. Wang, S. Li, W. Xia, X. Zhang, Q. Tang, Z. Ren, and X. Xu, Chin. Opt. Lett. 7, 489 (2009).
  8. H. Huang, Y. Huang, and X. Ren, Electron. Lett. 39, 113 (2003).
  9. X. Duan, Y. Huang, H. Huang, X. Ren, Q. Wang, Y. Shang, X. Ye, and S. Cai, J. Lightwave Technol. 27, 4697 (2009).
  10. X. Duan, Y. Huang, Q. Wang, H. Huang, X. Ren, and K. Wen, Chinese J. Lasers (in Chinese) 36, 2362 (2009).
  11. X. F. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, Opt. Express 18, 5879 (2010).
  12. C. Hums, T. Finger, T. Hempel, J. Christen, and A. Dadgar, J. Appl. Phys. 101, 033113 (2007).
  13. M. J. Mondry, D. I. Babit, J. E. Bowers, and L. A. Coldren, IEEE Photon. Technol. Lett. 4, 627 (1992).
  14. T. Makino, J. Lightwave Technol. 12, 2092 (1994).
  15. S. Jiang, L. Dong, R. Zhang, and S. Xie, Chin. Opt. Lett. 7, 960 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited