OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Vol. 9, Iss. 4 — Apr. 10, 2011
  • pp: 041601–

Stacking-faults-free zinc blende GaAs/AlGaAs axial heterostructure nanowires during vapor-liquid-solid growth

Jingwei Guo, Hui Huang, Xiaomin Ren, Xin Yan, Shiwei Cai, Yongqing Huang, Qi Wang, Xia Zhang, and Wei Wang  »View Author Affiliations


Chinese Optics Letters, Vol. 9, Issue 4, pp. 041601- (2011)


View Full Text Article

Acrobat PDF (2006 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Pure zinc blende structure GaAs/AlGaAs axial heterostructure nanowires (NWs) are grown by metal organic chemical vapor deposition on GaAs(111) B substrates using Au-catalyzed vapor-liquid-solid mechanism. Al adatom enhances the influence of diameters on NWs growth rate. NWs are grown mainly through the contributions from the direct impingement of the precursors onto the alloy droplets and not so much from adatom diffusion. The results indicate that the droplet acts as a catalyst rather than an adatom collector.

© 2011 Chinese Optics Letters

OCIS Codes
(310.3840) Thin films : Materials and process characterization
(160.4236) Materials : Nanomaterials

Citation
Jingwei Guo, Hui Huang, Xiaomin Ren, Xin Yan, Shiwei Cai, Yongqing Huang, Qi Wang, Xia Zhang, and Wei Wang, "Stacking-faults-free zinc blende GaAs/AlGaAs axial heterostructure nanowires during vapor-liquid-solid growth," Chin. Opt. Lett. 9, 041601- (2011)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-9-4-041601


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, and C. M. Lieber, Science 313, 1100 (2006).
  2. T. Bryllert, L.-E. Wernersson, L. E. Froberg, and L. Samuelson, IEEE Electron Device Lett. 27, 323 (2006).
  3. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
  4. H. Huang, X. Ren, X. Ye, J. Guo, Q. Wang, Y. Yang, S. Cai, and Y. Huang, Nano Lett. 10, 64 (2010).
  5. Y. Yao, T. Ochiai, T. Mano, T. Kuroda, T. Noda, N. Koguchi, and K. Sakoda, Chin. Opt. Lett. 7, 882 (2009).
  6. X. Mi, D. Li, F. Meng, and H. Zhao, Chin. Opt. Lett. 7, 335 (2009).
  7. C. Chen, N. Braidy, C. Couteau, C. Fradin, G. Weihs, and R. LaPierre, Nano Lett. 8, 495 (2008).
  8. Z. H. Wu, M. Sun, X. Y. Mei, and H. E. Ruda, Appl. Phys. Lett. 85, 657 (2004).
  9. M. J. Tambe, S. K. Lim, M. J. Smith, L. F. Allard, and S. Gradecak, Appl. Phys. Lett. 93, 151917 (2008).
  10. K. Tateno, H. Gotoh, and Y. Watanabe, Appl. Phys. Lett. 85, 1808 (2004).
  11. L. Ouattara, A. Mikkelsen, N. Skold, J. Eriksson, T. Knaapen, E. Cavar, W. Seifert, L. Samuelson, and E. Lundgren, Nano Lett. 7, 2859 (2007).
  12. J. Noborisaka, J. Motohisa, S. Hara, and T. Fukui, Appl. Phys. Lett. 87, 093109 (2005).
  13. K. Tomioka, Y. Kobayashi, J. Motohisa, S. Hara, and T. Fukui, Nanotechnology 20, 145302 (2009).
  14. X. Ye, H. Huang, X.-M. Ren, Y.-S. Yang, J.-W. Guo, Y.-Q. Huang, and Q. Wang, Chin. Phys. Lett. 27, 046101 (2010).
  15. V. G. Dubrovskii and N. V. Sibirev, Phys. Rev. E 70, 031604 (2004).
  16. M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, Appl. Phys. Lett. 93, 023116 (2008).
  17. B. A. Wacaser, K. Deppert, L. S. Karlsson, L. Samuelson, and W. Seifert, J. Cryst. Growth 287, 504 (2006).
  18. R. Magri, M. Rosini, and F. Casetta, Phys. Stat. Sol. C 7, 374 (2010).
  19. C. Soci, X.-Y. Bao, D. P. R. Aplin, and D. Wang, Nano Lett. 8, 4275 (2008).
  20. M. C. Plante and R. R. LaPierre, J. Cryst. Growth 310, 356 (2008).
  21. V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, I. P. Soshnikov, W. H. Chen, R. Larde, E. Cadel, P. Pareige, T. Xu, B. Grandidier, J.-P. Nys, D. Stievenard, M. Moewe, L. C. Chuang, and C. Chang-Hasnain, Phys. Rev. B 79, 205316 (2009).
  22. V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, M. Tchernycheva, J. C. Harmand, and V. M. Ustinov, Phys. Rev. E 77, 031606 (2008).
  23. J. C. Harmand, G. Patriarche, N. P'er'e-Laperne, M-N. M'erat-Combe, L. Travers, and F. Glas, Appl. Phys. Lett. 87, 203101 (2005).
  24. A. I. Persson, B. J. Ohlsson, S. Jeppesen, and L. Samuelson, J. Cryst. Growth 272, 167 (2004).
  25. H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, X. Zhang, Y. Guo, and J. Zou, Nano Lett. 7, 921 (2007).
  26. J. Bauer, V. Gottschalch, H. Paetzelt, G. Wagner, B. Fuhrmann, and H. S. Leipner, J. Cryst. Growth 298, 625 (2007).
  27. F. Glas, J.-C. Harmand, and G. Patriarche, Phys. Rev. Lett. 99, 146101 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited