OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 9, Iss. 4 — Apr. 10, 2011
  • pp: 041902–

Bidirectionally tunable all-optical switch based on multiple nano-structured resonators using backward quasi-phase-matching

Jun Xie, Yuping Chen, Wenjie Lu, and Xianfeng Chen  »View Author Affiliations

Chinese Optics Letters, Vol. 9, Issue 4, pp. 041902- (2011)

View Full Text Article

Acrobat PDF (2784 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Based on the second-order nonlinearity, we present a bidirectional tunable all-optical switch at C-band by introducing backward quasi-phase-matching technique in Mg-doped periodically poled lithium niobate (MgO:PPLN) waveguide with a nano-structure called multiple resonators. Two injecting forward lights and one backward propagating light interact with difference frequency generations. The transmission of forward signal and backward idler light can be modulated simultaneously with the variation of control light power based on the basic "phase shift" structure of a single resonator. In this scheme, all the results come from our simulation. The speed of this bidirectional optical switch can reach to femtosecond if a femtosecond laser is used as the control light.

© 2011 Chinese Optics Letters

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3130) Integrated optics : Integrated optics materials
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.1150) Optical devices : All-optical devices

Jun Xie, Yuping Chen, Wenjie Lu, and Xianfeng Chen, "Bidirectionally tunable all-optical switch based on multiple nano-structured resonators using backward quasi-phase-matching," Chin. Opt. Lett. 9, 041902- (2011)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, Science 308, 672 (2005).
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, Opt. Lett. 29, 2867 (2004).
  3. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, Nature Photon. 2, 185 (2008).
  4. Y. Chen, R. Wu, X. Zeng, Y. Xia, and X. Chen, Opt. Laser Technol. 38, 19 (2006).
  5. J. Zhang, Y. Chen, F. Lu, and X. Chen, Opt. Express 16, 6957 (2008).
  6. K. Liu, J. Shi, and X. Chen, Opt. Lett. 34, 1051 (2009).
  7. J. B. Khurgin, Phys. Rev. A 72, 023810 (2005).
  8. X. Gu, M. Makarov, Y. J. Ding, J. B. Khurgin, and W. P. Risk, Opt. Lett. 24, 127 (1999).
  9. C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, Appl. Phys. Lett. 86, 181105 (2005).
  10. M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).
  11. C. L. Sones, A. C. Muir, Y. J. Ying, S. Mailis, R. W. Eason, T. Jungk, 'A. Hoffmann, and E. Soergel, Appl. Phys. Lett. 92, 072905 (2008).
  12. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997), pp. 509-510.
  13. J. B. Khurgin, J. Opt. Soc. Am. B 22, 1062 (2005).
  14. A. Melloni, F. Morichetti, and M. Martinelli, Opt. Quantum Electron. 35, 365 (2003).
  15. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
  16. H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokkohama, IEEE Photon. Technol. Lett. 11, 328 (1999).
  17. Y. Kong, X. Chen, and Y. Xia, Appl. Phys. B 91, 479 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited