OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 9, Iss. 8 — Aug. 10, 2011
  • pp: 082301–082301

Low threshold voltage light-emitting diode in silicon-based standard CMOS technology

Zan Dong, Wei Wang, Beiju Huang, Xu Zhang, Ning Guan, and Hongda Chen  »View Author Affiliations

Chinese Optics Letters, Vol. 9, Issue 8, pp. 082301-082301 (2011)

View Full Text Article

Acrobat PDF (1317 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Low-voltage silicon (Si)-based light-emitting diode (LED) is designed based on the former research of LED in Si-based standard complementary metal oxide semiconductor (CMOS) technology. The low-voltage LED is designed under the research of cross-finger structure LEDs and sophisticated structure enhanced LEDs for high efficiency and stable light source of monolithic chip integration. The device size of low-voltage LED is 45.85\times 38.4 (\mu m), threshold voltage is 2.2 V in common condition, and temperature is 27 oC. The external quantum efficiency is about 10^{-6} at stable operating state of 5 V and 177 mA.

© 2011 Chinese Optics Letters

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(130.3120) Integrated optics : Integrated optics devices
(230.2090) Optical devices : Electro-optical devices
(250.5300) Optoelectronics : Photonic integrated circuits

Zan Dong, Wei Wang, Beiju Huang, Xu Zhang, Ning Guan, and Hongda Chen, "Low threshold voltage light-emitting diode in silicon-based standard CMOS technology," Chin. Opt. Lett. 9, 082301-082301 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. E. Willner, L. Zhang, Y. Yue, and X. Wu, Chin. Opt. Lett. 08, 909 (2010).
  2. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
  3. Y. Kanemitsu, K. Suzuki, S. Kyushin, and H. Matsumoto, Phys. Rev. B 51, 13103 (1995).
  4. H. Khatun, S. S. Mou, A. A. Mortuza, and A. B. M. Ismail, Chin. Opt. Lett. 8, 306 (2010).
  5. Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, Solid Store Electron. 40, 197 (1996).
  6. T. Komoda, J. Kelly, E. Cristiano, A. Nejirn, P. L. F. Hemment, K. P. Homewood, R. Gwilliam, J. E. Mynard, and R. J. Scal, Nucl. Inst. Meth. B 96, 387 (1995).
  7. G. Franz?o, F. Priolo, S. Coffa, A. Polman, and A. Carnera, Appl. Phys. Lett. 64, 2235 (1994).
  8. T. D. Chen, A. Agarwal, L. M. Giovane, J. S. Foresi, L. Liao, D. R. Lim, M. T. Morse, E. J. Ouellette III, S. H. Ahn, X. Duan, J. Michel, and L. C. Kimerling, Proc. SPIE 3279, 136 (1998).
  9. H. Presting, H. Kibbel, M. Jaros, R. M. Turton, U. Menczigar, G. Abstreiter, and H. G. Grimmeiss, Semicond. Sci. Tech. 7, 148 (1992).
  10. M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, Nature 412, 805 (2001).
  11. D. Leong, M. Harry, K. J. Resson, and K. P. Homewood, Nature 387, 686 (1997).
  12. M. Xie, Z. Yuan, B. Qian, and L. Pavesi, Chin. Opt. Lett. 7, 319 (2009).
  13. W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, Nature 410, 192 (2001).
  14. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
  15. L. Pavesi, Materials Today 8, 18 (2005).
  16. R. Newman, Phys. Rev. 100, 700 (1955).
  17. L. W. Snyman, A. Biber, H. Aharoni, M. Plessis, B. D. Patterson, and P. Seitz, in Proceedings of Workshop on High Performance Electron Devices for Microwave and Optoelectronic Applications 340 (1997).
  18. L. W. Snyman, H. Aharoni, and M. Plessis, IEEE Photon. Technol. Lett. 17, 2041 (2005).
  19. H. Aaroni and M. Plessis, IEEE J. Quantum Electron. 40, 557 (2004).
  20. L. W. Snyman, M. Plessis, and H. Aharoni, Jpn. J. Appl. Phys. 46, 2474 (2007).
  21. L. W. Snyman, K. A. Ogudo, M. Plessis, and G. Udahemuka, Proc. SPIE 7208, 72080C (2009).
  22. J. C. Tsang, J. A. Kash, and D. P. Vallett, IBM J. Res. Develop. 44, 583 (2000).
  23. L. W. Snyman, H. Aharoni, A. Biber, A. Bogalecki, L. Canning, M. Plessis, and P. Maree, Proc. SPIE 3953, 20 (2000).
  24. S. Sayil, in Proceedings of IEEE Region 5 Technical Conference 42 (2007).
  25. H. Chen, H. Liu, J. Liu, M. Gu, and B. Huang, Chin. Phys. Lett. 24, 265 (2007).
  26. B. Huang, X. Zhang, Z. Dong, W. Wang, and H. Chen, in Proceedings of 9th International Conference on Solid-State and Integrated-Circuit Technology 20 (2008).
  27. J. Bude, N. Sano, and A. Yoshii, Phys. Rev. B 45, 5848 (1992).
  28. J. Kramer, P. Seltz, E. F. Stelgmeler, H. Auderset, and B. Delley, Sensor. Actuator. Phys. 37-38, 521 (1993).
  29. C. W. Liu, S. T. Chang, W. T. Liu, M. Chen, and C. Lin, Appl. Phys. Lett. 77, 4347 (2000).
  30. M. Plessis, H. Aharoni, and L. W. Snyman, IEEE J. Sel. Top. Quantum Electron. 8, 1412 (2002).
  31. N. Akil, S. E. Kerns, D. V. Kerns, A. Hoffmann, and J. P. Charles, IEEE Trans. Electron Dev. 46, 1022 (1999).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited