OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 9, Iss. 8 — Aug. 10, 2011
  • pp: 083101–083101

Effect of standing-wave field distribution on femosecond laser-induced damage of HfO2/SiO2 mirror coating

Shunli Chen, Yuan'an Zhao, Hongbo He, and Jianda Shao  »View Author Affiliations

Chinese Optics Letters, Vol. 9, Issue 8, pp. 083101-083101 (2011)

View Full Text Article

Acrobat PDF (1540 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Single-pulse and multi-pulse damage behaviors of "standard" (with λ/4 stack structure) and "modified" (with reduced standing-wave field) HfO2/SiO2 mirror coatings are investigated using a commercial 50-fs, 800-nm Ti:sapphire laser system. Precise morphologies of damaged sites display strikingly different features when the samples are subjected to various number of incident pulses, which are explained reasonably by the standing-wave field distribution within the coatings. Meanwhile, the single-pulse laser-induced damage threshold of the "standard" mirror is improved by about 14% while suppressing the normalized electric field intensity at the outmost interface of the HfO2 and SiO2 layers by 37%. To discuss the damage mechanism, a theoretical model based on photoionization, avalanche ionization, and decays of electrons is adopted to simulate the evolution curves of the conduction-band electron density during pulse duration.

© 2011 Chinese Optics Letters

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(260.3230) Physical optics : Ionization
(310.1620) Thin films : Interference coatings
(320.7090) Ultrafast optics : Ultrafast lasers

Shunli Chen, Yuan'an Zhao, Hongbo He, and Jianda Shao, "Effect of standing-wave field distribution on femosecond laser-induced damage of HfO2/SiO2 mirror coating," Chin. Opt. Lett. 9, 083101-083101 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. Zeng, J. Wu, H. Xu, K. Wu, and E. Wu, Appl. Phys. B 79, 837 (2004).
  2. T. W. Walker, A. H. Guenther, and P. E. Nielsen, IEEE J. Quantum Electron. 17, 2041 (1981).
  3. J. Jasapara, A. V. V. Nampoothiri, and W. Rudolph, Phys. Rev. B 63, 045117 (2001).
  4. C. Huang, Y. Xue, Z. Xia, Y. Zhao, F. Yang, and P. Guo, Chin. Opt. Lett. 7, 49 (2009).
  5. G. Dai, Y. Chen, J. Lu, Z. Shen, and X. Ni, Chin. Opt. Lett. 7, 601 (2009).
  6. X. Liu, D. Li, Y. Zhao, X. Li, X. Ling, and J. Shao, Chin. Opt. Lett. 8, 41 (2010).
  7. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, J. Opt. Soc. Am. B 13, 459 (1996).
  8. L. Yuan, Y. Zhao, C. Wang, H. He, Z. Fan, and J. Shao, Appl. Surf. Sci. 253, 3450 (2007).
  9. J. H. Apfel, Appl. Opt. 16, 1880 (1977).
  10. F. Demichelis, E. Mezzetti-Minetti, L. Tallone, and E. Tresso, Appl. Opt. 23, 165 (1984).
  11. K. Starke, T. Gross, and D. Ristau, Proc. SPIE 4347, 528 (2001).
  12. G. Abromavicius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, Proc. SPIE 6720, 67200Y (2007).
  13. M. Albisi, F. De Tomasi, M. R. Perrone, M. L. Protopapa, A. Rizzo, F. Sarto, and S. Scaglione, Thin Solid films 396, 44 (2001).
  14. X. Jing, J. Shao, J. Zhang, Y. Jin, H. He, and Z. Fan, Opt. Express 17, 24137 (2009).
  15. K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, Proc. SPIE 5273, 501 (2004).
  16. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
  17. M. Jup'e, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, Opt. Express 17, 12269 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited