OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 10, Iss. 4 — Apr. 1, 2014
  • pp: 317–320

A Hybrid a-Si and Poly-Si TFTs Technology for AMOLED Pixel Circuits

Longyan Wang, Lei Sun, Dedong Han, Yi Wang, Mansun Chan, and Shengdong Zhang

Journal of Display Technology, Vol. 10, Issue 4, pp. 317-320 (2014)


View Full Text Article

Acrobat PDF (769 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A hybrid thin film transistor (TFT) technology is proposed and demonstrated, which features a simultaneous fabrication of amorphous silicon (a-Si) TFTs with low off-current and polycrystalline silicon (poly-Si) TFTs with high carrier mobility on one substrate in one single process. For the a-Si TFT fabrication, the active film is the as-deposited LPCVD a-Si film, whereas, for the poly-Si TFT fabrication, the poly-Si active film is the locally crystallized LPCVD a-Si film. The localized crystallization is realized via using metal-induced lateral crystallization (MILC) method. This proposed technology is applicable to active-matrix organic light-emitting diode (AMOLED) pixel circuits where switching TFTs and driving TFTs are required to be with low off-current and high on-current, respectively.

© 2014 IEEE

Citation
Longyan Wang, Lei Sun, Dedong Han, Yi Wang, Mansun Chan, and Shengdong Zhang, "A Hybrid a-Si and Poly-Si TFTs Technology for AMOLED Pixel Circuits," J. Display Technol. 10, 317-320 (2014)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-10-4-317


Sort:  Year  |  Journal  |  Reset

References

  1. M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, H. Ohshima, "Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display," IEEE Trans. Electron Devices 46, 2282-2288 (1999).
  2. B. Geffroy, P. Roy, C. Prat, "Organic light-emitting diode (OLED) technology: Materials, devices and display technologies," Polymer Int. 55, 572-582 (2006).
  3. E. Fortunato, P. Barquinha, R. Martins, "Oxide semiconductor thin-film transistors: A review of recent advances," Adv. Mater. 24, 2945-2986 (2012).
  4. T. Kamiya, K. Nomura, H. Hosono, "Present status of amorphous In-Ga-Zn-O thin-film transistors," Sci. Technol. Adv. Mater. 11, 044305-044328 (2010).
  5. C. W. Kim, J. G. Jung, J. B. Choi, D. h. Kim, C. Yi, H. D. Kim, Y. H. Choi, J. Im, "LTPS backplane technologies for AMLCDs and AMOLEDs," Dig. Tech. Paper, SID Int. Symp. (2011) pp. 862-865.
  6. A. Nathan, G. R. Chaji, S. J. Ashtiani, "Driving schemes for a-Si and LTPS AMOLED displays," J. Display Technol. 1, 267-277 (2005).
  7. A. A. Orouji, M. J. Kumar, "Leakage current reduction techniques in poly-Si TFTs for active matrix liquid crystal displays: A comprehensive study," IEEE Trans. Device Mater. Rel. 6, 315-325 (2006).
  8. T. Aoyama, K. Ogawa, Y. Mochizuki, N. Konishi, "Inverse staggered poly-Si and amorphous Si double structure TFT's for LCD panels with peripheral driver circuits integration," IEEE Trans. Electron Devices 43, 701-705 (1996).
  9. K. Shimizu, O. Sugiura, M. Matsumura, "On-chip bottom-gate polycrystalline and amorphous silicon thin film transistors using excimer laser annealing," Jpn. J. Appl. Phys. 29, L1775-L1777 (1990).
  10. P. Meia, J. B. Boycea, D. K. Forka, G. Andersona, J. Hoa, J. Lua, "Hybrid amorphous and polycrystalline silicon devices for large-area electronics," Proc. Mater. Res. Soc. Symp. (1998) pp. 3-12.
  11. K. Pangal, J. C. Sturm, S. Wagner, "Integrated amorphous and polycrystalline silicon thin-film transistors in a single silicon layer," IEEE Trans. Electron Devices 48, 707-714 (2001).
  12. K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, K. Hotta, "High-performance TFT's fabricated by XeCl excimer laser annealing of hydrogenated amorphous-silicon film," IEEE Trans. Electron Devices 36, 2868-2872 (1989).
  13. Y. W. Kim, W. K. Kwak, J. Y. Lee, W. S. Choi, K. Y. Lee, S. C. Kim, E. J. Yoo, "40 inch FHD AM-OLED display with IR drop compensation pixel circuit," SID Int. Symp. Dig. Tech. Paper (2009) pp. 85-87.
  14. H. Wang, M. Chan, S. Jagar, V. M. C. Poon, M. Qin, Y. Wang, P. K. Ko, "Super thin-film transistor with SOI CMOS performance formed by a novel grain enhancement method," IEEE Trans. Electron Devices 47, 1580-1586 (2000).
  15. M. Wong, Z. Jin, G. A. Bhat, H. S. Kwok, "Characterization of the MIC/MILC interface and its effects on the performances of MILC thin film transistors," IEEE Trans. Electron Devices 47, 1061-1067 (2000).
  16. R. Wehrspohn, S. Deane, I. French, I. Gale, J. Hewett, M. Powell, J. Robertson, "Relative importance of the Si-Si bond and Si-H bond for the stability of amorphous silicon thin film transistors," J. Appl. Phys. 87, 144-154 (2000).
  17. G. Bhat, H. Kwok, M. Wong, "Plasma hydrogenation of metal-induced laterally crystallized thin film transistors," IEEE Electron Device Lett. 21, 73-75 (2000).
  18. M. Cao, Member, T. Zhao, K. C. Saraswat, J. D. Plummer, "Study on hydrogenation of polysilicon thin film transistors by ion implantation," IEEE Trans. Electron Devices 42, 1134-1140 (1995).
  19. L. Han, Y. Huang, J. Sturm, S. Wagner, "Self-aligned top-gate coplanar a-Si:H thin-film transistors with a ${\rm SiO}_{2}$ –silicone hybrid gate dielectric," IEEE Electron Device Lett. 32, 36-38 (2011).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited