OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 2, Iss. 2 — Jun. 1, 2006
  • pp: 130–137

Radiation Simulations of Top-Emitting Organic Light-Emitting Devices With Two- and Three-Microcavity Structures

Jiun-Haw Lee, Kuan-Yu Chen, Chia-Chiang Hsiao, Hung-Chi Chen, Chih-Hsiang Chang, Yean-Woei Kiang, and C. C. Yang

Journal of Display Technology, Vol. 2, Issue 2, pp. 130-137 (2006)

View Full Text Article

Acrobat PDF (630 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We demonstrate the simulation results of the radiation properties from top-emitting organic light-emitting devices (top-emitting OLEDs) with two- and three-microcavity structures based on the general electromagnetic theory. The parameters of the layer thickness and complex refractive index of each layer, the locations and density of the oscillating dipoles, and the emission photoluminescence spectrum are varied to optimize the device performance. In evaluating the deice performances, the output spectrum, the intensity distribution, and the viewing-angle characteristics of a top-emitting OLED are concerned. The simulation results are consistent with the Fabry-Pérot cavity equation, which can be used as a guideline for designing a two-cavity top-emitting OLED. In such a design process, the dipole position is chosen first. Then the thicknesses of the whole organic layer, the semi-transparent cathode, and the dielectric layer are adjusted for optimizing the device performance. In a three-cavity top-emitting OLED, not only the emission intensity and the viewing angle can be optimized at the same time, but also the emission wavelength can be independently tuned. Besides, the use of a three-cavity structure helps to narrow the spectral width and increase the color purity.

© 2006 IEEE

Jiun-Haw Lee, Kuan-Yu Chen, Chia-Chiang Hsiao, Hung-Chi Chen, Chih-Hsiang Chang, Yean-Woei Kiang, and C. C. Yang, "Radiation Simulations of Top-Emitting Organic Light-Emitting Devices With Two- and Three-Microcavity Structures," J. Display Technol. 2, 130-137 (2006)

Sort:  Journal  |  Reset


  1. C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987).
  2. C. W. Tang, S. A. Vanslyke, C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
  3. Z. Meng, M. Wong, IEEE Trans. Electron Devices 49, 991 (2002).
  4. Y. Kijima, N. Asai, N. Kishii, S. Tamura, IEEE Trans. Electron Devices 44, 1222 (1997).
  5. Y. Hong, J.-Y. Nahm, J. Kanicki, IEEE J. Sel. Topics Quantum Electron. 10, 16 (2004).
  6. T. N. Jackson, Y.-Y. Lin, D. J. Gundlach, H. Klauk, IEEE J. Sel. Topics Quantum Electron. 4, 100 (1998).
  7. C. J. Lee, R. B. Pode, D. G. Moon, J. I. Han, Thin Solid Films 467, 201 (2004).
  8. G. Gu, G. Parthasarathy, P. E. Burrows, P. Tian, I. G. Hill, A. Kahn, S. R. Forrest, J. Appl. Phys. 86, 4067 (1999).
  9. P. E. Burrows, G. Gu, S. R. Forrest, E. P. Vicenzi, T. X. Zhou, J. Appl. Phys. 87, 3080 (2000).
  10. H. Riel, S. Karg, T. Beierlein, W. Rieß, J. Appl. Phys. 94, 5290 (2003).
  11. C. C. Wu, P. Y. Hsieh, C. L. Lin, H. H. Chiang, Appl. Phys. Lett. 84, 3966 (2004).
  12. K. Neyts, P. De Visschere, D. K. Fork, G. B. Anderson, J. Opt. Soc. Amer. B 17, 114 (2000).
  13. C. C. Shiau, H. C. Chen, J. H. Lee, Y. W. Kiang, C. C. Yang, C. H. Chang, SPIE Proc. (2005) pp. 149.
  14. K. B. Kahen, Appl. Phys. Lett. 78, 1649 (2001).
  15. N. Takada, T. Tsutsui, S. Saito, Appl. Phys. Lett. 63, 2032-2034 (1993).
  16. S. K. So, W. K. Choi, L. M. Leung, K. Neyts, Appl. Phys. Lett. 74, 1939 (1999).
  17. B. W. DAndrade, M. E. Thompson, S. R. Forrest, Adv. Mater. 14, 147 (2002).
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  19. P. A. Hobson, J. A. E. Wasey, I. Sage, W. L. Barnes, IEEE J. Sel. Topics Quantum Electron. 8, 378 (2002).
  20. E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, G. J. Zydzik, Science 265, 943 (1994).
  21. S. Han, C. Huang, Z.-H. Lu, J. Appl. Phys. 97, (2005) 093 102.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited