OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 2, Iss. 2 — Jun. 1, 2006
  • pp: 143–152

Maximizing Alq3 OLED Internal and External Efficiencies: Charge Balanced Device Structure and Color Conversion Outcoupling Lenses

Weixin Li, Robert A. Jones, Steven C. Allen, Jason C. Heikenfeld, and Andrew J. Steckl

Journal of Display Technology, Vol. 2, Issue 2, pp. 143-152 (2006)

View Full Text Article

Acrobat PDF (1649 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, we report bright, efficient Alq3-based [tris-(8-hydroxyquinoline) aluminum] organic light-emitting diode (OLED) structures that incorporate hemispherical lenses for increased output power efficiency. The 6-layer hybrid (polymer/small molecule) OLED structure contains two spin-coated polymer layers and four thermally evaporated small molecule layers. This structure results in balanced charge injection, thus leading to a more efficient device. The use of index-matched transparent lenses resulted in luminous and external quantum efficiency of 7.5 lm/W and 8%, respectively. The size and shape of the lens was used to control the angular power distribution. Lenses incorporating color conversion media were used to achieve high OLED efficiency in various colors. Saturated yellow, orange, and red devices with external quantum efficiencies as high ~4 were obtained from this approach.

© 2006 IEEE

Weixin Li, Robert A. Jones, Steven C. Allen, Jason C. Heikenfeld, and Andrew J. Steckl, "Maximizing Alq3 OLED Internal and External Efficiencies: Charge Balanced Device Structure and Color Conversion Outcoupling Lenses," J. Display Technol. 2, 143-152 (2006)

Sort:  Journal  |  Reset


  1. C. W. Tang, S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett. 51, 913-915 (1987).
  2. S. W. Wen, M. T. Lee, C. H. Chen, "Recent development of blue fluorescent OLED materials and devices," J. Disp. Technol. 1, 90-99 (2005).
  3. A. J. Steckl, J. Heikenfeld, S. C. Allen, "Light wave coupled flat panel displays and solid-state lighting using hybrid inorganic/organic materials," J. Display Technol. 1, 157-166 (2005).
  4. E. H-E. Wu, S.-H. Li, C.-W. Chen, G. Li, Z. Xu, Y. Yang, "Controlling optical properties of electrodes with stacked metallic thin films for polymeric light-emitting diodes and displays," J. Display Technol. 1, 105-111 (2005).
  5. M. G. Mason, C. W. Tang, L. S. Hung, P. Raychaudhuri, J. Madathil, D. J. Giesen, L. Yan, Q. T. Le, Y. Gao, S. Y. Lee, L. S. Liao, L. F. Cheng, W. R. Salaneck, D. A. d. Santos, J. L. Bredas, "Interfacial chemistry of Alq3 and LiF with reactive metals," J. Appl. Phys. 89, 2756-2765 (2001).
  6. G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M.-F. Nabor, R. Schlaf, E. A. Mash, N. R. Armstrong, "Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode," J. Appl. Phys. 84, 2324-2327 (1998).
  7. E. I. Haskal, A. Curioni, P. F. Seidler, W. Andreoni, "Lithium-aluminum contacts for organic light-emitting devices," Appl. Phys. Lett. 71, 1151-1153 (1997).
  8. X. Y. Deng, S. W. Tong, L. S. Hung, Y. Q. Mo, Y. Cao, "Role of ultrathin Alq3 and LiF layers in conjugated polymer light-emitting diodes," Appl. Phys. Lett. 82, 3104-3106 (2003).
  9. Y. Yang, Q. Pei, "Electron injection polymer for polymer light-emitting diodes," J. Appl. Phys. 77, 4807-4809 (1994).
  10. T. Kanbara, T. Yamamoto, K. Ishikawa, H. Takezoe, A. Fukuda, "Polyquinoxaline as an excellent electron injecting material for electroluminescent device," Appl. Phys. Lett. 68, 2346-2348 (1996).
  11. C. W. Tang, S. A. VanSlyke, C. H. Chen, "Electroluminescence of doped organic thin films," J. Appl. Phys. 65, 3610-3616 (1989).
  12. T. J. Marks, J. G. C. Veinot, J. Cui, H. Yan, A. Wang, N. L. Edleman, J. Ni, Q. Huang, P. Lee, N. R. Armstrong, "Progress in high work function TCO OLED anode alternatives and OLED nanopixelation," Synth. Met. 127, 29-35 (2002).
  13. J. Cui, Q. Huang, J. G. C. Veinot, H. Yan, T. J. Marks, "Interfacial microstructure function in organic light-emitting diodes: assembled tetraaryldiamine and copper phthalocyanine," Adv. Mater. 14, 565-569 (2002).
  14. S. Kim, D. Chung, J. Hong, T. Chung, T. Kim, W. Lee, K. Jang, "Effects of buffer layer in organic light-emitting diodes," Mol. Cryst. Liq. Cryst. 377, 129-132 (2002).
  15. T. Kugler, W. R. Salaneck, "Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy," Thin Solid Films 354, 129-135 (1999).
  16. J. R. Sheats, H. Antoniadis, M. Heuschen, W. Leonard, J. Miller, R. Moon, D. Roitman, A. Shocking, "Organic electroluminescent devices," Science 273, 884-887 (1996).
  17. V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, S. R. Forrest, "Weak microcavity effects in organic light-emitting devices," Phys. Rev. B 58, 3730-3740 (1998).
  18. S. Wang, Y. Q. Liu, X. B. Huang, S. L. Xu, J. R. Gong, X. H. Chen, L. Yi, Y. Xu, G. Yu, L. J. Wan, C. L. Bai, D. B. Zhu, "Organic light-emitting diodes with improved hole-electron balance by using molecular layers of phthalocyanine to modify the anode surface," Appl. Phys. A 78, 553-556 (2004).
  19. N. C. Greenham, R. H. Friend, D. D. C. Bradley, "Angular dependence of the emission from a conjugated polymer light-emitting diode: implications for efficiency calculations," Adv. Mater. 6, 491-494 (1994).
  20. T. Yamasaki, K. Sumioka, T. Tsutsui, "Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium," Appl. Phys. Lett. 76, 1243-1245 (2000).
  21. G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, "High-external-quantum-efficiency organic light-emitting devices," Opt. Lett. 22, 396-398 (1997).
  22. T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, M. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater. 13, 1149-1152 (2001).
  23. C. F. Madigan, M. H. Lu, J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000).
  24. S. R. Forrest, D. D. C. Bradley, M. E. Thompson, "Measuring the efficiency of organic light-emitting devices," Adv. Mater. 15, 1043-1048 (2003).
  25. T. Mori, T. Ogawa, D. Cho, T. Mizutani, "A discussion of conduction in organic light-emitting diodes," Appl. Surf. Sci. 212-213, 458-463 (2003).
  26. M. A. Baldo, M. E. Thompson, S. R. Forrest, "Phosphorescent materials for application to organic light emitting devices," Pure Appl. Chem. 71, 2095-2106 (1999).
  27. Q. Huang, J. Cui, J. G. C. Veinot, H. Yan, T. J. Marks, "Realization of high-efficiency/high-luminance small-molecule organic light-emitting diodes: synergistic effects of siloxane anode functionalization/hole-injection layers, and hole/exciton-blocking/electron-transport," Appl. Phys. Lett. 82, 331-333 (2003).
  28. D. F. O'Brien, P. E. Burrows, S. R. Forrest, B. E. Koene, D. E. Loy, M. E. Thompson, "Hole transporting materials with high glass transition temperatures for use in organic light-emitting devices," Adv. Mater. 10, 1108-1112 (1998).
  29. H. Fujikawa, M. Ishii, S. Tokito, Y. Taga, "Organic light-emitting diodes using triphenylamine based hole transporting materials," Proc. Mat. Res. Soc. Symp. (2000).
  30. S. Naka, H. Okada, H. Onnagawa, Y. Yamaguchi, T. Tsutsui, "Carrier transport properties of organic materials for EL device operation," Synth. Met. 111-112, 331-333 (2000).
  31. P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, M. E. Thompson, "Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices," J. Appl. Phys. 79, 7991-8006 (1996).
  32. S. R. Forrest, "Ultrathin organic films grown by organic molecular beam deposition and related techniques," Chem. Rev 97, 1793-1896 (1997).
  33. G. E. Johnson, K. M. McGrane, M. Stolka, "Electroluminescence from single layer molecularly doped polymer films," Pure Appl. Chem. 67, 175-182 (1995).
  34. B. J. Chen, W. Y. Lai, Z. Q. Gao, C. S. Lee, S. T. Lee, W. A. Gambling, "Electron drift mobility and electroluminescent efficiency of tris(8-hydroxyquinolinolato) aluminum," Appl. Phys. Lett. 75, 4010-4012 (1999).
  35. S. T. Lee, Y. M. Wang, X. Y. Houb, "Interfacial electronic structures in an organic light-emitting diode," Appl. Phys. Lett. 74, 670-672 (1999).
  36. K. Book, H. Bassler, A. Elschner, S. Kirchmeyer, "Hole injection from an ITO/PEDT anode into the hole transporting layer of an OLED probed by bias induced absorption," Org. Electron. 4, 227-232 (2003).
  37. L. A Zuppiroli, L. Si-Ahmed, K. Kamaras, F. Nuesch, M. N. Bussac, D. Ades, A. Siove, E. Moons, M. Gratzel, "Self-assembled monolayers as interfaces for organic opto-electronic devices," Eur. Phys. J. B 11, 505-512 (1999).
  38. G. Parthasarathy, C. Shen, A. Kahn, S. R. Forrest, "Lithium doping of semiconducting organic charge transport materials," J. Appl. Phys. 89, 4986-4992 (2001).
  39. S. Naka, H. Okada, H. Onnagawa, T. Tsutsui, "High electron mobility in bathophenanthroline," Appl. Phys. Lett. 76, 197-199 (2000).
  40. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature 395, 151-154 (1998).
  41. A. R. Duggal, J. J. Shiang, C. M. Heller, D. F. Foust, "Organic light-emitting devices for illumination quality white light," Appl. Phys. Lett. 80, 3470-3472 (2002).
  42. P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, M. E. Thompson, "Achieving full-color organic light-emitting devices for lightweight, flat-panel displays," IEEE Trans. Electron Devices 44, 1188-1203 (1997).
  43. G. Seybold, G. Wagenblast, "New perylene and violanthrone dyestuffs for fluorescent collectors," Dyes and Pigments 11, 303-317 (1989).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited