OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 5, Iss. 12 — Dec. 1, 2009
  • pp: 462–467

Electronic Structures Above Mobility Edges in Crystalline and Amorphous In-Ga-Zn-O: Percolation Conduction Examined by Analytical Model

Toshio Kamiya, Kenji Nomura, and Hideo Hosono

Journal of Display Technology, Vol. 5, Issue 12, pp. 462-467 (2009)

View Full Text Article

Acrobat PDF (334 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Electronic structures and carrier transport mechanisms in disordered oxide semiconductors, crystalline InGaO<sub>3</sub>(ZnO)<sub><i>m</i></sub> (<i>m</i> = 1,5) (c-IGZO)and amorphous InGaZnO<sub>4</sub> (a-IGZO), are examined based on a percolation conduction model. Donor levels (E<sub>d</sub>) and densities (<i>N</i><sub>D</sub>) are estimated by numerical calculations of free electron densities (<i>n</i><sub>e</sub>) obtained by Hall measurements. It shows that the donor levels are rather deep, ~0.15 eV for c-IGZO and ~0.11 eV for a-IGZO. This analysis indicates that use of a simple analytical relation of <i>n</i><sub>e</sub> exp(-<i>E<sub>d</sub></i>/2<i>kT</i> can not always be used to estimate <i>E<sub>d</sub></i> and <i>N<sub>D</sub></i> even for a low <i>n<sub>e</sub></i> film because the film can be in the saturation regime at room temperature if <i>E<sub>d</sub></i> and <i>N<sub>D</sub></i> are small, which is actually the case for a-IGZO. The temperature dependences of electron mobilities are analyzed using an analytical equation of the percolation conduction model, which reveals that distributed potential barriers exist above mobility edges in IGZO with average heights 30–100 meV and distribution widths 5–20 meV, which depend on atomic structure and deposition condition of IGZO films. High-quality a-IGZO films have the lowest potential barriers among the IGZO films examined, in spite that a-IGZO has a more disordered amorphous structure than c-IGZO have. It is explained by the partly disordered structure of c-IGZO.

© 2009 IEEE

Toshio Kamiya, Kenji Nomura, and Hideo Hosono, "Electronic Structures Above Mobility Edges in Crystalline and Amorphous In-Ga-Zn-O: Percolation Conduction Examined by Analytical Model," J. Display Technol. 5, 462-467 (2009)

Sort:  Year  |  Journal  |  Reset


  1. M. Ito, M. Kon, N. Ikeda, M. Ishizaki, Y. Ugajin, N. Sekine, "“Front drive” display structure for color electronic paper using fully transparent amorphous oxide TFT array," IEICE Trans. Electron. E90-C, 2105-2111 (2007).
  2. H. N. Lee, J. W. Kyung, S. K. Kang, D. Y. Kim, M. C. Sung, S. J. Kim, C. N. Kim, H. G. Kim, S. T. Kim, "Current status of, challenges to, and perspective view of AM-OLED," Proc. Int. Display Workshop (2006) pp. 663.
  3. J. Y. Kwon, J. S. Jung, K. S. Son, T. S. Kim, M. K. Ryu, K. B. Park, Y. S. Park, S. Y. Lee, J. M. Kim, "GaInZnO TFT for active matrix display," Dig. Tech. Papers, 15th Int. Workshop on Active-Matrix Flatpanel Displays and Devices (2008) pp. 287-290.
  4. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, "Room-temperature fabrication of transparent flexible thin film transistors using amorphous oxide semiconductors," Nature 432, 488-492 (2004).
  5. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, "High-mobility thin-film transistor with amorphous InGaZnO$_{\rm 4}$ channel fabricated by room temperature rf-magnetron sputtering," Appl. Phys. Lett. 89, 112123-1-112123-3 (2006).
  6. R. Hayashi, M. Ofuji, N. Kaji, K. Takahashi, K. Abe, H. Yabuta, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, "Circuits using uniform TFTs based on amorphous In-Ga-Zn-O," J. SID 15/11, 915-921 (2007).
  7. J. Y. Kwon, J. S. Jung, K. S. Son, T. S. Kim, M. K. Ryu, K. B. Park, Y. S. Park, S. Y. Lee, J. M. Kim, "GaInZnO TFT for active matrix display," Dig. Tech. Papers, 15th Int. Workshop on Active-Matrix Flatpanel Displays and Devices (2008) pp. 287-290.
  8. T. Riedl, P. Görrn, P. Hölzer, W. Kowalsky, "Ultra-high long-term stability of oxide-TTFTs under current stress," Phys. Stat. Sol. (RRL) 1, 175-177 (2007).
  9. M.-C. Sung, H.-N. Lee, C. N. Kim, S. K. Kang, D. Y. Kim, S.-J. Kim, S. K. Kim, S.-K. Kim, H.-G. Kim, S.-T. Kim, "Novel backplane for AM-OLED device," Proc. Int. Meeting on Inf. Display (2007) pp. 9-1.
  10. J. K. Jeong, J. H. Jeong, J. H. Choi, J. S. Im, S. H. Kim, H. W. Yang, K. N. Kang, K. S. Kim, T. K. Ahn, H.-J. Chung, H. K. Chung, "12.1-inch WXGA AMOLED display driven by indium-gallium-zinc oxide TFTs array," SID 08 Dig. (2008) pp. 1-4.
  11. J.-H. Lee, D.-H. Kim, D.-J. Yang, S.-Y. Hong, K.-S. Yoon, P.-S. Hong, C.-O. Jeong, H.-S. Park, S. Y. Kim, S. K. Lim, S. S. Skim, "World's largest (15-inch) XGA AMLCD panel using IGZO oxide TFT," SID'08 Dig. (2008) pp. 625-628.
  12. R. G. LeComber, D. I. Jones, W. E. Spear, "Hall effect and impurity conduction in substitutionally doped amorphous silicon," Phil. Mag. 35, 1173-1187 (1977).
  13. L. Friedman, "Hall conductivity of amorphous semiconductors in the random phase model," J. Non-Cryst. Sol. 6, 329-341 (1971).
  14. J. Friedman, "I. The Hall effect in ordered and disordered systems," Philos. Mag. B 38, 467-476 (1978).
  15. D. Emin, "The sign of the Hall effect in hopping conduction," Philos. Mag. 35, 1189-1198 (1977).
  16. N. F. Mott, "Conduction in glasses containing transition metal ions," J. Non-Cryst. Sol. 1, 1-17 (1968).
  17. A. Suemasu, K. Nakahata, K. Ro, T. Kamiya, C. M. Fortmann, I. Shimizu, "In situ hydrogen plasma treatment for improved transport of (400) oriented polycrystalline silicon films," Sol. Energy Mater. & Sol. Cells 66, 313-320 (2001).
  18. T. Kamiya, K. Nakahata, Y. T. Tan, Z. A. K. Durrani, I. Shimizu, "Growth, structure and transport properties of thin ($> 10$ nm) n-type microcrystalline silicon prepared on silicon oxide and its application to single electron transistor," J. Appl. Phys. 89, 6265-6271 (2001).
  19. D. Adler, L. P. Flora, S. D. Senturia, "Electrical conductivity in disordered systems," Solid State Commun. 12, 9-12 (1973).
  20. N. Kimizuka, M. Isobe, M. Nakamura, "Syntheses and single-crystal data of homologous compounds, In$_{2}$O$_{3}$(ZnO)$_{m}$ ($m = 3, 4$, and 5), InGaO$_{3}$(ZnO)$_{3}$, and Ga$_{2}$O$_{3}$(ZnO)$_{\rm m}$ ($m = 7, 8, 9$, and 16) in the In$_{2}$O$_{3}$-ZnGa$_{2}$O$_{4}$-ZnO System," J. Solid State Chem. 116, 170-178 (1995).
  21. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, "Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO$_{3}$(ZnO)$_{5}$ films," Appl. Phys. Lett. 85, 993-1995 (2004).
  22. A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, "Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO$_{4}$," Thin Solid Films 486, 38-41 (2005).
  23. J. H. Werner, "Origin of curved arrhenius plots for the conductivity of polycrystalline semiconductors," Sol. Stat. Phenomena 37–38, 213-218 (1994).
  24. J. H. Werner, H. H. Güttier, "Barrier inhomogeneities at schottky contacts," J. Appl. Phys. 69, 1522-1533 (1991).
  25. K. Nomura, T. Kamiya, H. Yanagi, E. Ikenaga, K. Yang, K. Kobayashi, M. Hirano, H. Hosono, "Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive x-ray photoelectron spectroscopy," Appl. Phys. Lett. 92, 202117-1-202117-3 (2008).
  26. H. Ohta, K. Nomura, M. Orita, M. Hirano, K. Ueda, T. Suzuki, Y. Ikuhara, H. Hosono, "Single-crystalline films of the homologous series InGaO$_{3}$(ZnO)$_{\rm m}$ grown by reactive solid-phase epitaxy," Adv. Funct. Mater. 13, 139-144 (2003).
  27. K. Nomura, H. Ohta, T. Suzuki, C. Honjyo, K. Ueda, T. Kamiya, M. Orita, Y. Ikuhara, M. Hirano, H. Hosono, "Growth mechanism for single-crystalline thin film of InGaO$_{3}$(ZnO)$_{\rm 5}$ by reactive solid-phase epitaxy," J. Appl. Phys. 95, 5532-5539 (2004).
  28. S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).
  29. K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, H. Hosono, "Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations," Phys. Rev. B 75, 035212-1-035212-5 (2007).
  30. E. O. Kane, "Thomas-Fermi approach to impure semiconductor band structure," Phys. Rev. 131, 79-88 (1963).
  31. W. E. Taylor, N. H. Odell, H. Y. Fan, "Grain boundary barriers in germanim," Phys. Rev. 88, 867-875 (1952).
  32. P. V. Evans, S. F. Nelson, "Determination of grain-boundary defect-state densities from transport measurements," J. Appl. Phys. 69, 3605-3611 (1991).
  33. B. K. Meyer, D. Volm, A. Graber, H. C. Alt, T. Detchprohm, A. Amano, I. Akasaki, "Shallow donors in GaN—The binding energy and the electron effective mass," Solid State Commun. 95, 597-600 (1995).
  34. T. Kamiya, K. Nomura, H. Hosono, "Electronic structure of the amorphous oxide semiconductor a-InGaZnO$_{4-{\rm x}}$: Tauc-Lorentz optical model and origins of subgap states," Physica Status Solidi A 206, 860-867 (2009).
  35. T. Kamiya, K. Nomura, H. Hosono, "Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping," J. Display Technol. 5, 468-483 (2009).
  36. H.-H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, C.-C. Wu, "Modeling of amorphous InGaZnO$_{4}$ thin film transistors and their subgap density of states," Appl. Phys. Lett. 92, 133503-1-133503-3 (2008).
  37. M. Roilos, "Experimental Hall effect data for amorphous semiconductors," Phil. Mag. B 38, 477-489 (1978).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited