OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 5, Iss. 12 — Dec. 1, 2009
  • pp: 484–494

Oxide Electronics by Spatial Atomic Layer Deposition

David H. Levy, Shelby F. Nelson, and Diane Freeman

Journal of Display Technology, Vol. 5, Issue 12, pp. 484-494 (2009)


View Full Text Article

Acrobat PDF (1349 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We report on zinc oxide (ZnO)-based devices produced by a fast, open-air atomic layer deposition (ALD) process relying upon the spatial isolation of reactive gases. At deposition rates of greater than 100 Å per minute, ZnO-based thin-film transistors by spatial atomic layer deposition (S-ALD) show mobility above 15 cm2/Vs and excellent stability. Measurement and modeling of the gas isolation in the deposition head is discussed. Saturation curves obtained for aluminum oxide (Al2O3) growth using trimethylaluminum and water are shown to be consistent with chamber ALD systems. Finally, the ability of this new ALD process to leverage patterning by using poly(methyl methacrylate) (PMMA) as a growth inhibitor for selective area deposition is discussed. Relatively thin films of PMMA (~ 40 Å) are shown to be capable of inhibiting the growth of ZnO for at least 1200 ALD cycles.

© 2009 IEEE

Citation
David H. Levy, Shelby F. Nelson, and Diane Freeman, "Oxide Electronics by Spatial Atomic Layer Deposition," J. Display Technol. 5, 484-494 (2009)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-5-12-484


Sort:  Year  |  Journal  |  Reset

References

  1. N. Ohya, T. Ban, "Thin film transistor of ZnO fabricated by chemical solution deposition," Jpn. J. Appl. Phys. Part I 40, 297 (2001).
  2. R. L. Hoffman, B. J. Norris, J. F. Wager, "ZnO-based transparent thin-film transistors," Appl. Phys. Lett. 82, 733 (2003).
  3. O. Nomura, K. Ueda, H. Hirano, "Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor," Science 300, 1269 (2003).
  4. P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes, Jr."Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Appl. Phys. Lett. 82, 1117 (2003).
  5. B. Bayraktaroglu, K. Leedy, R. Neidhard, "Microwave ZnO thin-film transistors," IEEE Electron Device Lett. 29, 1024 (2008).
  6. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano1, H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature 432, 488 (2004).
  7. P. Görrn, P. Hölzer, T. Riedl, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, S. Kipp, "Stability of transparent zinc tin oxide transistors under bias stress," Appl. Phys. Lett. 90, 063502 (2007).
  8. D. H. Levy, D. Freeman, S. F. Nelson, P. J. Cowdery-Corvan, L. M. Irving, "Stable ZnO thin film transistors by fast open air atomic layer deposition," Appl. Phys. Lett. 92, 192101 (2008).
  9. E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, R. F. P. Martins, L. M. N. Pereira, "Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature," Appl. Phys. Lett. 85, 2541 (2004).
  10. Y. J. Li, Y. W. Kwon, M. Jones, Y. W. Heo, J. Zhou, S. C. Luo, P. H. Holloway, E. Douglas, D. P. Norton, Z. Park, S. Li, "Progress in semiconducting oxide-based thin-film transistors for displays," Semicond. Sci. Technol. 20, 720 (2005).
  11. D. Levy, L. Irving, A. Childs, "Solution-processed Zinc Oxide thin-film transistors," SID Sympos. Dig. (2007) pp. 230.
  12. B. J. Norris, J. Anderson, J. F. Wager, D. A. Keszler, "Spin-coated zinc oxide transparent transistors," J. Phys. D 36, L105 (2003).
  13. B. Sun, H. Sirringhaus, "Solution-processed Zinc Oxide field-effect transistors based on self-assembly of colloidal nanorods," Nanoletters 5, 2408 (2005).
  14. S. J. Lim, S.-J. Kwon, H. Kim, J.-S. Park, "High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO," Appl. Phys. Lett. 91, 183517 (2007).
  15. S.-H. K. Park, C.-S. Hwang, H. Y. Jeong, H. Y. Chu, K. I. Cho, "Transparent ZnO-TFT arrays fabricated by atomic layer deposition," Electrochem. Solid State Lett. 11, H10 (2008).
  16. T. Suntola, J. Antson, Method for Producing Compound Thin Films U.S. Patent 4 058 430 (1977).
  17. P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, S. M. George, "Ca test of ${\hbox{Al}}_{2}{\hbox{O}}_{3}$ gas diffusion barriers grown by atomic layer deposition on polymers," Appl. Phys. Lett. 89, 031915 (2006).
  18. M. D. Groner, J. W. Elam, F. H. Fabreguette, S. M. George, "Electrical characterization of thin ${\hbox{Al}}_{2}{\hbox{O}}_{3}$ films grown by atomic layer deposition on silicon and various metal substrates," Thin Solid Films 413, 186 (2002).
  19. M. Copel, M. Gribelyuk, E. Gusev, "Structure and stability of ultrathin zirconium oxide layers on Si(001)," Appl. Phys. Lett. 76, 436 (2000).
  20. J. W. Elam, D. Routkevitch, P. P. Mardilovich, S. M. George, "Conformal coating on ultrahigh- aspect-ratio nanopores of anodic alumina by atomic layer deposition," Chem. Mater. 15, 3507 (2003).
  21. S.-H. K. Park, C.-S. Hwang, H.-S. Kwack, J.-H. Lee, H. Y. Chu, "Characteristics of ZnO thin films by means of plasma-enhanced atomic layer deposition," Electrochem. Solid State Lett. 9, G299 (2006).
  22. J. D. Ferguson, E. R. Smith, A. W. Weimer, S. M. George, "ALD of ${\rm SiO}_{2}$ at room temperature using TEOS and H2O with NH3 as the catalyst," J. Electrochem. Soc. 151, G528 (2004).
  23. T. S. Suntola, A. J. Pakkala, S. G. Lindfors, Method for Performing Growth of Compound Thin Films U.S. Patent 4 413 022 (1983).
  24. R. L. Puurunen, "Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process," J. Appl. Phys. 97, 121301 (2005).
  25. J. W. Elam, M. D. Groner, S. M. George, "Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition," Rev. Sci. Inst. 73, 2981 (2002).
  26. R. Matero, A. Rahtu, M. Ritala, M. Leskelä, T. Sajavaara, "Effect of water dose on the atomic layer deposition rate of oxide thin films," Thin Solid Films 368, 1 (2000).
  27. R. Kuse, M. Kundu, T. Yasuda, N. Miyata, A. Toriumi, "Effect of precursor concentration in atomic layer deposition of Al2O3," J. Appl. Phys. 94, 6411 (2003).
  28. G. Krautheim, T. Hecht, S. Jakschik, U. Schröder, W. Zahn, "Mechanical stress in ALD- ${\hbox{Al}}_{2}{\hbox{O}}_{3}$ films," Appl. Surf. Sci. 252, 200 (2005).
  29. E. B. Yousfi, J. Fouache, D. Lincot, "Study of atomic layer epitaxy of zinc oxide by in-situ quartz crystal microgravimetry," Appl. Surf. Sci. 153, 223 (2000).
  30. B. D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, 1978) pp. 102.
  31. P. F. Carcia, R. S. McLean, M. H. Reilly, "High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition," Appl. Phys. Lett. 88, 123509 (2006).
  32. S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, T. Kawai, "Transparent thin-film transistors using ZnO as an active channel layer and their electrical properties," J. Appl. Phys. 93, 1624 (2003).
  33. M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, "High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper," Appl. Phys. Lett. 90, 212114 (2007).
  34. B. Bayraktaroglu, K. Leedy, "Pulsed laser deposited ZnO for thin film transistor applications," ECS Trans. 16, 61 (2008).
  35. J. K. Jeong, H. W. Yang, J. H. Jeong, Y.-G. Mo, H. D. Kim, "Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors," Appl. Phys. Lett. 93, 123508 (2008).
  36. X. Jiang, S. F. Bent, "Area-selective atomic layer deposition of platinum on YSZ substrates using microcontact printed SAMs," J. Electrochem. Soc. 154, D648 (2007).
  37. K. J. Park, G. N. Parsons, "Selective area atomic layer deposition of rhodium and effective work function characterization in capacitor structures," Appl. Phys. Lett. 89, 043111 (2006).
  38. R. Gupta, B. G. Willis, "Nanometer spaced electrodes using selective area atomic layer deposition," Appl. Phys. Lett. 90, 253102 (2007).
  39. M. Yan, Y. Koide, J. R. Babcock, P. R. Markworth, J. A. Belot, T. J. Marks, R. P. H. Chang, "Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates," Appl. Phys. Lett. 79, 1709 (2001).
  40. A. Sinha, D. W. Hess, C. L. Henderson, "Area selective atomic layer deposition of titanium dioxide: Effect of precursor chemistry," J. Vac. Sci. Technol. B 24, 2523 (2006).
  41. R. Chen, H. Kim, P. C. McIntyre, S. F. Bent, "Self-assembled monolayer resist for atomic layer deposition of ${\rm HfO}_{2}$ and ${\rm ZrO}_{2}$ high- gate dielectrics," Appl. Phys. Lett. 84, 4017 (2004).
  42. Z. Bao, "Materials and fabrication needs for low-cost organic transistor circuits," Adv. Materials 12, 227 (2000).
  43. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, "High- resolution inkjet printing of all-polymer transistor circuits," Science 290, 2123 (2000).
  44. R. Chen, H. Kim, P. C. McIntyre, S. F. Bent, "Investigation of self-assembled monolayer resists for hafnium dioxide atomic layer deposition," Chem. Mater. 17, 536 (2005).
  45. R. L. Puurunen, W. Vandervorst, "Island growth as a growth mode in atomic layer deposition: A phenomenological model," J. Appl. Phys. 96, 7686 (2004).
  46. R. Chen, H. Kim, P. C. McIntyre, D. W. Porter, S. F. Bent, "Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification," Appl. Phys. Lett. 86, 191910 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited