OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 5, Iss. 12 — Dec. 1, 2009
  • pp: 531–540

Materials, Devices, and Circuits of Transparent Amorphous-Oxide Semiconductor

Hideya Kumomi, Seiichiro Yaginuma, Hideyuki Omura, Amita Goyal, Ayumu Sato, Masaya Watanabe, Mikio Shimada, Nobuyuki Kaji, Kenji Takahashi, Masato Ofuji, Tomohiro Watanabe, Naho Itagaki, Hisae Shimizu, Katsumi Abe, Yoshinori Tateishi, Hisato Yabuta, Tatsuya Iwasaki, Ryo Hayashi, Toshiaki Aiba, and Masafumi Sano

Journal of Display Technology, Vol. 5, Issue 12, pp. 531-540 (2009)


View Full Text Article

Acrobat PDF (2345 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper presents the following recent investigations of transparent amorphous-oxide semiconductors (TAOS) from materials to devices and circuits. 1) Composition of metals in TAOS are widely explored with the aim of seeking semiconductors suitable for the channel layers of thin-film transistors (TFTs) composing backplanes for flat-panel displays. It is found in combinatorial approaches to the materials exploration that indium-based ternary TAOS (In-X-O) and their TFTs show the properties and the performance as good as those of the most popular material of amorphous In-Ga-Zn-O (a-IGZO) when X=Zn or Ge. 2) Defects and impurities in TAOS are investigated by theoretical approaches. The first-principle calculation of the electron states reveals that charge-neutral oxygen vacancy or interstitial forms the density of states around mid-gap level and does not generate carriers directly, while hydrogen impurity raises the Fermi level beyond the conduction-band minimum and acts as a donor in TAOS. 3) Device structures of TAOS-TFTs are also investigated extensively for better performance and stability. It is found in channel-etch type TFTs with bottom-gate inverse-stagger structures that the TFT characteristics and stability are significantly improved by chemically removing the back-channel layer in a wet-etching process. Coplanar homojunction (CH) structure is proposed as a novel device structure where conductive a-IGZO regions work as the source and drain electrodes to the channel region of semiconductor a-IGZO. The CH TFTs show excellent characteristics and stability, with low series resistance without any difficulty in making good electrical contact between metals and TAOS. 4) Circuits using TAOS-TFTs are demonstrated. A ring oscillator composed of fifteen-stage inverters with a buffer circuit operates as designed by circuit simulation with a TFT model for hydrogenated amorphous Si TFTs. Pixel circuits composed of three TFTs and one transparent capacitor successfully drive organic light-emission diode cells without a planarization layer on a 2-in diagonal panel having 176x144x3 pixels.

© 2009 IEEE

Citation
Hideya Kumomi, Seiichiro Yaginuma, Hideyuki Omura, Amita Goyal, Ayumu Sato, Masaya Watanabe, Mikio Shimada, Nobuyuki Kaji, Kenji Takahashi, Masato Ofuji, Tomohiro Watanabe, Naho Itagaki, Hisae Shimizu, Katsumi Abe, Yoshinori Tateishi, Hisato Yabuta, Tatsuya Iwasaki, Ryo Hayashi, Toshiaki Aiba, and Masafumi Sano, "Materials, Devices, and Circuits of Transparent Amorphous-Oxide Semiconductor," J. Display Technol. 5, 531-540 (2009)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-5-12-531


Sort:  Year  |  Journal  |  Reset

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature 432, 488-492 (2004).
  2. H. Hosono, M. Yasukawa, H. Kawazoe, "Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides," J. Non-Cryst. Solids 203, 334-344 (1996).
  3. K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, H. Hosono, "Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations," Phys. Rev. B 75, 035212 (2007).
  4. H.-H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, C.-C. Wu, "Modeling of amorphous InGaZnO$_4$ thin film transistors and their subgap density of states," Appl. Phys. Lett. 92, 133503 (2008).
  5. M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, H. Hosono, "Trap densities in amorphous-InGaZnO$_4$ thin-film transistors," Appl. Phys. Lett. 92, 13, 133512 (2008).
  6. K. Nomura, T. Kamiya, H. Yanagi, E. Ikenaga, K. Yang, K. Kobayashi, M. Hirano, H. Hosono, "Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive x-ray photoelectron spectroscopy," Appl. Phys. Lett. 92, 20, 202117 (2008).
  7. K. Jeon, C. Kim, I. Song, J. Park, S. Kim, S. Kim, Y. Park, J.-H. Park, S. Lee, D. M. Kim, D. H. Kim, "Modeling of amorphous InGaZnO thin-film transistors based on the density of states extracted from the optical response of capacitance-voltage characteristics," Appl. Phys. Lett. 93, 182102 (2008).
  8. J.-H. Park, K. Jeon, S. Lee, S. Kim, S. Kim, I. Song, C. J. Kim, J. Park, Y. Park, D. M. Kim, D. H. Kim, "Extraction of density of states in amorphous GaInZnO thin-film transistors by combining an optical charge pumping and capacitance-voltage characteristics," IEEE Electron Device Lett. 29, 1292-1295 (2008).
  9. C. Chen, K. Abe, H. Kumomi, J. Kanicki, "Density of states of a-InGaZnO from temperature-dependent field-effect studies," IEEE Trans. Electron Devices 56, 1177-1183 (2009).
  10. M. Fujii, Y. Uraoka, T. Fuyuki, J. S. Jung, J. Y. Kwon, "Experimental and theoretical analysis of degradation in Ga$_2$O$_3$-In$_2$O$_3$-ZnO thin-film transistors," Jpn. J. Apl. Phys. 48, 04C091 (2009).
  11. T. Kawamura, H. Uchiyama, S. Saito, H. Wakana, T. Mine, M. Hatano, K. Torii, T. Onai, "1.5-V operating fully-depleted amorphous oxide thin film transistors achieved by 63-mV/dec subthreshold slope," Tech. Dig., 2008 IEEE Int. Electron Device Meeting (2008) pp. 1-4.
  12. C. J. Kim, D. Kang, I. Song, J. C. Park, H. Lim, S. Kim, E. Lee, R. Chung, J. C. Lee, Y. Park, "Highly stable Ga$_2$O$_3$-In$_2$O$_3$-ZnO TFT for active-matrix organic light-emitting diode display application," Tech. Dig., 2006 IEEE Int. Electron Device Meeting (2006) pp. 1-4.
  13. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, "High-mobility thin-film transistor with amorphous InGaZnO$_4$ channel fabricated by room temperature rf-magnetron sputtering," Appl. Phys. Lett. 89, 112123 (2006).
  14. H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, "Amorphous oxide channel TFTs," Thin Solid Films 516, 1516-1522 (2008).
  15. J. Y. Kwon, K. S. Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, J. W. Kim, Y. G. Lee, C. J. Kim, S. I. Kim, Y. S. Park, S. Y. Lee, J. M. Kim, "4 inch QVGA AMOLED display driven by GaInZnO TFT," Proc. IDW 2007 (2007) pp. 1783-1786.
  16. M. Ito, M. Kon, M. Ishizaki, N. Sekine, "A flexible active-matrix TFT array with amorphous oxide semiconductors for electronic paper," Proc. IDW/AD 2005 (2005) pp. 845-846.
  17. E. Fortunato, N. Correia, P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, "High-performance flexible hybrid field-effect transistors based on cellulose fiber paper," IEEE Electron Device Lett. 29, 988-990 (2008).
  18. W. Lim, E. A. Douglas, S.-H. Kim, D. P. Norton, S. J. Pearton, F. Ren, H. Shen, W. H. Chang, "High mobility InGaZnO$_4$ thin-film transistors on paper," Appl. Phys. Lett. 94, 072103 (2009).
  19. H.-N. Lee, J. Kyung, M.-C. Sung, D. Y. Kim, S. K. Kang, S.-J. Kim, C. N. Kim, H.-G. Kim, S.-T. Kim, "Oxide TFT with multilayer gate insulator for backplane of AMOLED device," J. Soc. Inf. Display 16, 265-272 (2008).
  20. M. Ito, M. Kon, C. Miyazaki, N. Ikeda, M. Iishizaki, Y. Ugajin, N. Sekine, "“Front drive” display structure for color electronic paper using fully transparent amorphous oxide TFT array," IEICE Trans. Electron. E90-C, 2105-2111 (2007).
  21. M. Ito, M. Kon, C. Miyazaki, N. Ikeda, M. Iishizaki, R. Matsubara, Y. Ugajin, N. Sekine, "Amorphous oxide TFT and their applications in electrophoretic displays," Phys. Stat. Sol. (a) 205, 1885-1894 (2008).
  22. M. Ito, C. Miyazaki, M. Ishizaki, M. Kon, N. Ikeda, T. Okubo, R. Matsubara, K. Hatta, Y. Ugajin, N. Sekine, "Application of amorphous oxide TFT to electrophoretic display," J. Non-Cryst. Solids 354, 2777-2782 (2008).
  23. R. Hayashi, M. Ofuji, N. Kaji, K. Takahashi, K. Abe, H. Yabuta, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, "Circuits using uniform TFTs based on amorphous In-Ga-Zn-O," J. Soc. Inf. Display 15, 915-921 (2007).
  24. J. K. Jeong, J. H. Jeong, H. W. Yang, T. K. Ahn, M. Kim, K. S. Kim, B. S. Gu, H.-J. Chung, J.-S. Park, Y.-G. Mo, H. D. Kim, H. K. Chung, "12.1-in. WXGA AMOLED display driven by InGaZnO thin-film transistors," J. Soc. Inf. Display 17, 95-100 (2009).
  25. A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, "Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO$_4$," Thin Solid Films 486, 38-41 (2005).
  26. M. Fujii, H. Yano, T. Hatayama, Y. Uraoka, T. Fuyuki, J. S. Jung, J. Y. Kwon, "Thermal analysis of degradation in Ga$_2$O$_3$-In$_2$O$_3$-ZnO thin-film transistors," Jpn. J. Apl. Phys. 47, 6236-6240 (2008).
  27. I. Song, S. Kim, H. Yin, C. J. Kim, J. Park, S. Kim, H. S. Choi, E. Lee, Y. Park, "Short channel characteristics of gallium-indium-zinc-oxide thin film transistors for three-dimensional stacking memory," IEEE Electron Device Lett. 29, 549-552 (2008).
  28. H. Yin, S. Kim, C. J. Kim, I. Song, J. Park, S. Kim, Y. Park, "Fully transparent nonvolatile memory employing amorphous oxides as charge trap and transistor's channel layer," Appl. Phys. Lett. 93, 172109 (2008).
  29. H. Yin, S. Kim, H. Lim, Y. Min, C. J. Kim, I. Song, J. Park, S.-W. Kim, A. Tikhonovsky, J. Hyun, Y. Park, "Program/erase characteristics of amorphous gallium indium zinc oxide nonvolatile memory," IEEE Trans. Electron Devices 55, 2071-2077 (2008).
  30. M.-J. Lee, C. B. Lee, S. Kim, H. Yin, J. Park, S. E. Ahn, B. S. Kang, K. H. Kim, G. Stefanovich, I. Song, S.-W. Kim, J. H. Lee, S. J. Chung, Y. H. Kim, C. S. Lee, J. B. Park, I. G. Baek, C. J. Kim, Y. Park, "Stack friendly all-oxide 3D RRAM using GaInZnO peripheral TFT realized over glass substrates," Tech. Dig., 2008 IEEE Int. Electron Device Meeting (2008) pp. 1-4.
  31. M.-C. Sung, H.-N. Lee, C. N. Kim, S. K. Kang, D. Y. Kim, S.-J. Kim, S. K. Kim, S.-K. Kim, H.-G. Kim, S.-T. Kim, "Novel backplane for AM-OLED device," Dig. Tech. Papers, 7th Int. Meeting Inf. Display (2007) pp. 133-136.
  32. J. Y. Kwon, K. S. Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, B. W. Yoo, J. W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, J. M. Kim, "Bottom-gate gallium indium zinc oxide thin-film transistor array for high-resolution AMOLED display," IEEE Electron Device Lett. 29, 1309-1311 (2008).
  33. J.-H. Lee, D.-H. Kim, D.-J. Yang, S.-Y. Hong, K.-S. Yoon, P.-S. Hong, C.-O. Jeong, H.-S. Park, S. Y. Kim, S. K. Lim, S. S. Kim, "World's largest (15-inch) XGA AMLCD panel using IGZO oxide TFT," Dig. Tech. Papers, SID Int. Symp. (2008) pp. 625-628.
  34. H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," J. Non-Cryst. Solids 352, 851-858 (2006).
  35. T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, "Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In-Ga-Zn-O system," Appl. Phys. Lett. 90, 242114 (2007).
  36. N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R. L. Hoffman, C.-H. Park, D. A. Keszler, "Transparent thin-film transistors with zinc indium oxide channel layer," J. Appl. Phys. 97, 064505 (2005).
  37. P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, E. Fortunato, "Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide," J. Non-Cryst. Solids 352, 1749-1752 (2006).
  38. P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, E. Fortunato, "Effect of UV and visible light radiation on the electrical performances of transparent TFTs based on amorphous indium zinc oxide," J. Non-Cryst. Solids 1756-1760 (2006).
  39. D. C. Paine, B. Yaglioglu, Z. Beiley, S. Lee, "Amorphous IZO-based transparent thin film transistors," Thin Solid Films 516, 5894-5898 (2008).
  40. N. Itagaki, T. Iwasaki, H. Kumomi, T. Den, K. Nomura, T. Kamiya, H. Hosono, "Zn-In-O based thin-film transistors: Compositional dependence," Phys. Stat. Sol. (a) 205, 1915-1919 (2008).
  41. J. E. Medvedeva, "Averaging of the electron effective mass in multicomponent transparent conducting oxides," Euro. Phys. Lett. 78, 57004-57009 (2007).
  42. D.-H. Cho, S. Yang, C. Byun, M. K. Ryu, S.-H. K. Park, C.-S. Hwang, S. M. Yoon, H.-Y. Chu, "Transparent oxide thin-film transistors composed of Al and Sn-doped zinc indium oxide," IEEE Electron Device Lett. 30, 48-50 (2009).
  43. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, D. A. Keszler, "High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer," Appl. Phys. Lett. 86, 013503 (2005).
  44. W. B. Jackson, R. L. Hoffman, G. S. Herman, "High-performance flexible zinc tin oxide field-effect transistors," Appl. Phys. Lett. 87, 193503 (2005).
  45. P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Riedl, "Towards see-through displays: Fully transparent thin-film transistors driving transparent organic light-emitting diodes," Adv. Mater. 18, 738-741 (2006).
  46. P. Görrn, P. Hölzer, T. Riedl, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, S. Kipp, "Stability of transparent zinc tin oxide transistors under bias stress," Appl. Phys. Lett. 90, 063502 (2007).
  47. P. Görrn, M. Lehnhardt, T. Riedl, W. Kowalsky, "The influence of visible light on transparent zinc tin oxide thin film transistors," Appl. Phys. Lett. 91, 193504 (2007).
  48. T. Riedl, P. Görrn, P. Hölzer, W. Kowalsky, "Ultra-high long-term stability of oxide-TTFTs under current stress," Phys. Stat. Sol. (RRL) 1, 175-177 (2007).
  49. P. Görrn, F. Ghaffari, T. Riedl, W. Kowalsky, "Zinc tin oxide based driver for highly transparent active matrix OLED displays," Solid-State Electron. 53, 329-331 (2009).
  50. E. M. C. Fortunato, L. M. N. Pereira, P. M. C. Barquinha, A. M. Botelho do Rego, G. Gonçalves, A. Vilà, J. R. Morante, R. F. P. Martins, "High mobility indium free amorphous oxide thin film transistors," Appl. Phys. Lett. 92, 222103 (2008).
  51. J. C. Lee, J. Won, Y. Chung, H. Lee, E. Lee, D. Kang, C. Kim, J. Choi, J. Kim, "Investigations of semiconductor devices using SIMS; diffusion, contamination, process control," Appl. Surf. Sci. 255, 1395-1399 (2008).
  52. Y.-K. Moon, S. Lee, D.-H. Kim, D.-H. Lee, C.-O. Jeong, J.-W. Park, "Application of DC magnetron sputtering to deposition of InGaZnO films for thin film transistor devices," Jpn. J. Apl. Phys. 48, 031301 (2009).
  53. J. P. Perdew, K. Burke, M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. 77, 3865-3868 (1996).
  54. G. Kresse, J. Hafner, "Ab initio molecular dynamics for liquid metals," Phys. Rev. B 47, 558-561 (1993).
  55. G. Kresse, J. Hafner, "Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium," Phys. Rev. B 49, 14251-14269 (1994).
  56. H. Omura, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, "First-principles study of native point defects in crystalline indium gallium zinc oxide," J. Appl. Phys. 105, 093712 (2009).
  57. D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, P. G. Baranov, "Hydrogen: A relevant shallow donor in zinc oxide," Phys. Rev. Lett. 88, 045504 (2002).
  58. J. Robertson, P. W. Peacock, "Doping and hydrogen in wide gap oxides," Thin Sold Films 445, 155-160 (2003).
  59. G. A. Shi, M. Stavola, S. J. Pearton, M. Thieme, E. V. Lavrov, J. Weber, "Hydrogen local modes and shallow donors in ZnO," Phys. Rev. B 72, 195211 (2005).
  60. B. D. Ahn, H. S. Shin, H. J. Kim, J.-S. Park, J. K. Jeong, "Comparison of the effects of Ar and H$_2$ plasmas on the performance of homojunctioned amorphous indium gallium zinc oxide thin film transistors," Appl. Phys. Lett. 93, 203506 (2008).
  61. B. D. Ahn, H. S. Shin, G. H. Kim, J.-S. Park, H. J. Kim, "A novel amorphous InGaZnO thin film transistor structure without source/drain layer deposition," Jpn. J. Appl. Phys. 48, 03B019 (2009).
  62. S. Kim, J. Park, C. Kim, I. Song, S. Kim, S. Park, H. Yin, H.-I. Lee, E. Lee, Y. Park, "Source/drain formation of self-aligned top-gate amorphous GaInZnO thin-film transistors by NH$_3$ plasma treatment," IEEE Electron Device Lett. 30, 374-376 (2009).
  63. A. Sato, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, "Amorphous In-Ga-Zn-O thin-film transistor with coplanar homojunction structure," Thin Solid Films .
  64. S. Lany, A. Zunger, "Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides," Phys. Rev. Lett. 98, 045501 (2007).
  65. J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K.-K. Kim, S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K.-W. Kwon, Y. Park, "High-performance amorphous gallium indium zinc oxide thin-film transistors through N$_2$O plasma passivation," Appl. Phys. Lett. 93, 053505 (2008).
  66. C.-J. Kim, J. Park, S. Kim, I. Song, S. Kim, Y. Park, E. Lee, B. Anass, J.-S. Park, "Characteristics and cleaning of dry-etching-damaged layer of amorphous oxide thin-film transistor," Electrochem. Solid-State Lett. 12, H95-H97 (2009).
  67. H. Lim, H. Yin, J.-S. Park, I. Song, C. Kim, J. Park, S. Kim, S.-W. Kim, C. B. Lee, Y. C. Kim, Y. S. Park, D. Kang, "Double gate GaInZnO thin film transistors," Appl. Phys. Lett. 93, 063505 (2008).
  68. Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, "Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes," Thin Solid Films 516, 5899-5902 (2008).
  69. J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, "Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment," Appl. Phys. Lett. 90, 262106 (2007).
  70. R. Hayashi, A. Sato, M. Ofuji, K. Abe, H. Yabuta, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, "Improved amorphous In-Ga-Zn-O TFTs," Dig. Tech. Papers, SID Int. Symp. (2008) pp. 621-624.
  71. A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, "Amorphous In-Ga-Zn-O coplanar homojunction thin-film transistor," Appl. Phys. Lett. 94, 133502 (2009).
  72. J. Park, I. Song, S. Kim, S. Kim, C. Kim, J. Lee, H. Lee, E. Lee, H. Yin, K.-K. Kim, K.-W. Kwon, Y. Park, "Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors," Appl. Phys. Lett. 93, 053501 (2008).
  73. J. H. Na, M. Kitamura, Y. Arakawa, "High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes," Appl. Phys. Lett. 93, 063501 (2008).
  74. Names of Authors???, "Diffusion coefficient of hydrogen was preliminarily estimated by observing the diffusion of deuterium in $a$-IGZO; for Instance, $5.0\times 10^{-17}\hbox{--}2.6\times 10^{-14}$ cm$^2$s$^{-1}$ for a Temperature range of 393–673 K, which is about one thousandth smaller than in crystalline ZnO," .
  75. M. Ofuji, K. Abe, H. Shimizu, N. Kaji, R. Hayashi, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, "Fast thin-film transistor circuits based on amorphous oxide semiconductor," IEEE Electron Device Lett. 28, 273-275 (2007).
  76. C. Chen, K. Abe, T.-C. Fung, H. Kumomi, J. Kanicki, "Amorphous In-Ga-Zn-O thin film transistor current-scaling pixel electrode circuit for active-matrix organic light-emitting displays," Jpn. J. Appl. Phys. 48, 03B025 (2009).
  77. D. P. Gosain, T. Tanaka, "Instability of amorphous indium gallium zinc oxide thin film transistors under light illumination," Jpn. J. Appl. Phys. 48, 03B018 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited