OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 5, Iss. 6 — Jun. 1, 2009
  • pp: 192–197

Transparent ZnO Thin-Film Transistors on Glass and Plastic Substrates Using Post-Sputtering Oxygen Passivation

Chien Cheng Liu, Meng Lun Wu, Kuang Chung Liu, Shih-Hua Hsiao, Yu Sheng Chen, Gong-Ru Lin, and JianJang Huang

Journal of Display Technology, Vol. 5, Issue 6, pp. 192-197 (2009)


View Full Text Article

Acrobat PDF (1061 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

High-current level ZnO thin-film transistors (TFTs) on transparent substrates are demonstrated using low-temperature RF sputtering. Oxygen passivation induced fill of oxygen vacancies within the sputtered n-type ZnO thin films on glass substrates is investigated to manipulate the performance of top-gate ZnO TFTs. The surface oxygen passivation effectively enlarges grain size of the ZnO on glass substrates from 7 nm to 20 nm and increases the oxygen composition ratio from 30% to 35%, which essentially yields a TFT with its significantly increase of drain-source current and $I_{\rm on}/I _{\rm off}$ ratio, as compared with a typical ZnO based TFT. The optimum duration of oxygen passivation in this study yields a device with a drain-source current level 0.87 mA under a bias condition $V _{\rm GS} =5~{\hbox{V}}$ and $V_{\rm DS} =15~{\hbox{V}}$, $I_{\rm on} /I_{\rm off}$ ratio ${\hbox{1.4}}\times {\hbox{10}} ^{6}$. We further demonstrate high-performance top-gate ZnO TFTs by applying similar low-temperature process on a flexible polymer substrate. The device shows an $I _{\rm DS}$ 26 $\mu{\hbox{A}}$ under a bias condition $V _{\rm GS} =15~{\hbox{V}}$ and $V_{\rm DS} =25~{\hbox{V}}$ with gate size $W/L=600~\mu {\hbox{m}}/300~\mu {\hbox{m}}$. The average optical transmission of the entire flexible TFT structure in the visible spectrum range is about 82% while the transmission at 550 nm is 88%.

© 2009 IEEE

Citation
Chien Cheng Liu, Meng Lun Wu, Kuang Chung Liu, Shih-Hua Hsiao, Yu Sheng Chen, Gong-Ru Lin, and JianJang Huang, "Transparent ZnO Thin-Film Transistors on Glass and Plastic Substrates Using Post-Sputtering Oxygen Passivation," J. Display Technol. 5, 192-197 (2009)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-5-6-192


Sort:  Year  |  Journal  |  Reset

References

  1. Q. J. Yao, D. J. Li, "Fabrication and property study of thin film transistor using rf sputtered ZnO as channel layer," J. Non-Cryst. Solids 351, 3191-3194 (2005).
  2. E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, L. M. N. Pereira, R. F. P. Martins, "Fully transparent ZnO thin-film transistor produced at room temperature," Adv. Mater. 17, 590-594 (2005).
  3. R. L. Hoffman, B. J. Norris, J. F. Wager, "ZnO-based transparent thin-film transistors," Appl. Phys. Lett. 82, 733-735 (2003).
  4. K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu, "Growth of p-type zinc oxide film by chemical vapor deposition," J. Appl. Phys. 36, 21453 (1997).
  5. H. C. Cheng, C. F. Chen, C. Y. Tsay, "Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method," Appl. Phys. Lett. 90, 012113 (2007).
  6. P. F. Carcia, R. S. McLean, M. H. Reilly, "High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition," Appl. Phys. Lett. 88, 123509 (2006).
  7. B. Yaglioglu, H. Y. Yeom, R. Beresford, D. C. Paine, "High-mobility amorphous In 2O3–10 wt %ZnO thin film transistors," Appl. Phys. Lett. 89, 062103 (2006).
  8. J. Siddiqui, E. Cagin, D. Chen, J. D. Phillips, "ZnO thin-film transistors with polycrystalline (Ba,Sr)TiO3 gate insulators," Appl. Phys. Lett. 88, 212903(3) (2006).
  9. S. B. Zhang, S. H. Wei, A. Zunger, "Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors," Phys. Rev. B 63, 075205 (2001).
  10. G. Xiong, J. Wilkinson, B. Mischuck, S. Tüzemen, K. B. Ucer, R. T. Williams, "P-type group II-VI semiconductor compounds," Appl. Phys. Lett. 80, 1195 (2002).
  11. S. B. Zhang, S. H. Wei, A. Zunger, "Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO," Phys. Rev. B 63, 075205 (2001).
  12. H. S. Bae, J. H. Kim, S. Im, "Mobility enhancement in ZnO-based TFTs by H treatment," Electrochem. Solid-State Lett. 7, G279-G281 (2004).
  13. W. B. Jackson, G. S. Herman, R. L. Hoffman, C. Taussig, S. Braymen, F. Jeffery, J. Hauschildt, "Zinc tin oxide transistors on flexible substrates," J. Non-Cryst. Solids 352, 1735-1755 (2006).
  14. P. F. Carcia, R. S. McLean, M. H. Reilly, "Oxide engineering of ZnO thin-film transistors for flexible electronics," J. SID 13/7, 547-554 (2005).
  15. B. D. Cullity, S. R. Stock, Elements of X-Ray Diffractions (Prentice-Hall, 2001) pp. 177.
  16. B. D. Cullity, S. R. Stock, Elements of X-Ray Diffractions (Prentice-Hall, 2001) pp. 170.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited