OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 8, Iss. 1 — Jan. 1, 2012
  • pp: 35–40

Effect of Self-Assembled Monolayer (SAM) on the Oxide Semiconductor Thin Film Transistor

Seung-Hwan Cho, Yong-Uk Lee, Jeong-Soo Lee, Kang-Moon Jo, Bo Sung Kim, Hyang-Shik Kong, Jang-Yeon Kwon, and Min-Koo Han

Journal of Display Technology, Vol. 8, Issue 1, pp. 35-40 (2012)

View Full Text Article

Acrobat PDF (949 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, we proposed the self-assembled monolayer (SAM) as a protection layer against plasma and chemically induced damages to the back interface of an oxide semiconductor during the deposition of the passivation layer. When a thin-film transistor (TFT) is passivated with plasma-enhanced chemical-vapor deposition (PECVD) SiOx and solution-based materials, the back interface of the oxide semiconductor could be exposed to plasma and chemically induced damages, respectively. We employed SAMs on the back surface of the oxide semiconductor prior to the passivation process to suppress such damage. The hydrophobic Cl-SAM (3-chloropropyltriethoxysilane) suppressed the degradation in mobility and subthreshold slope (SS) due to ion bombardment during plasma treatment. The hydrophobic CH3-SAM (octyltriethoxysilane) successfully blocked chemically induced damage due to solution-based passivation.

© 2011 IEEE

Seung-Hwan Cho, Yong-Uk Lee, Jeong-Soo Lee, Kang-Moon Jo, Bo Sung Kim, Hyang-Shik Kong, Jang-Yeon Kwon, and Min-Koo Han, "Effect of Self-Assembled Monolayer (SAM) on the Oxide Semiconductor Thin Film Transistor," J. Display Technol. 8, 35-40 (2012)

Sort:  Year  |  Journal  |  Reset


  1. K. Nomura, H. Ohta, A. Takaki, T. Kamiya, M. Hirano, H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature 432, 488 (2004).
  2. J. Park, I. Song, S. Kim, S. Kim, C. Kim, J. Lee, H. Lee, E. Lee, H. Yin, K. K. Kim, K. W. Kwon, Y. Park, "Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors," Appl. Phys. Lett. 93, 053501 (2008).
  3. M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, "High mobility bottom gate InGaZnO thin film transistors with ${\hbox{SiO}}_{x}$ etch stopper," Appl. Phys. Lett. 90, 212114 (2007).
  4. S. J. Seo, C. G. Choi, Y. H. Hwang, B. S. Bae, "High performance solution-processed amorphous zinc tin oxide thin film transistor," J. Phys. D: Appl. Phys. 42, 035106 (2009).
  5. Y. J. Chang, D. H. Lee, G. S. Herman, C. H. Chang, "Performance, spin-coated zinc tin oxide thin-film transistors," Electrochem. Solid-State Lett. 10, H135-H138 (2007).
  6. Y. H. Kim, K. H. Kim, M. S. Oh, H. J. Kim, J. I. Han, S. K. Park, "Ink-jet-printed zinc–tin–oxide thin-film transistors and circuits with rapid thermal annealing process," IEEE Electron Device Lett. 31, 836- (2010).
  7. J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, H. D. Kim, "Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water," Appl. Phys. Lett. 92, 072104 (2008).
  8. J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, H. D. Kim, "Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors," Appl. Phys. Lett. 93, 123508 (2008).
  9. P. T. Liu, Y. T. Chou, L. F. Teng, "Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress," Appl. Phys. Lett. 95, 233504 (2009).
  10. K. S. Son, T. S. Kim, J. S. Jung, M. K. Ryu, K. B. Park, B. W. Yoo, K. C. Park, J. Y. Kwon, S. Y. Lee, J. M. Kim, "Threshold voltage control of amorphous gallium indium zinc oxide TFTs by suppressing back-channel current," Electrochem. Solid-State Lett. 12, H26-H28 (2009).
  11. Y. H. Kim, H. S. Kim, J. I. Han, S. K. Park, "Solvent-mediated threshold voltage shift in solution-processed transparent oxide thin-film transistors," Appl. Phys. Lett. 97, 092105 (2010).
  12. A. Ulman, "Formation and structure of self-assembled monolayers," Chem. Rev. 96, 1533 (1996).
  13. J. H. Cho, Y. D. Park, D. H. Kim, W. K. Kim, H. W. Jang, J. L. Lee, K. W. Cho, "Reactive metal contact at indium–tin–oxide/self-assembled monolayer interfaces," Appl. Phys. Lett. 88, 102104 (2006).
  14. I. H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin, D. L. Smith, "Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers," Phys. Rev. B 54, 014321 (1996).
  15. B. de Boer, A. Hadipour, M. M. Mandoc, T. Van Woudenbergh, P. W. M. Blom, "Tuning of metal work functions with self-assembled monolayers," Adv. Mater. 17, 621 (2005).
  16. Y. Jang, J. H. Cho, D. H. Kim, Y. D. Park, M. Hwang, K. W. Cho, "Effects of the permanent dipoles of self-assembled monolayer-treated insulator surfaces on the field-effect mobility of a pentacene thin-film transistor," Appl. Phys. Lett. 90, 132104 (2007).
  17. S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, "Control of carrier density by self-assembled monolayers in organic field-effect transistors," Nature Mater. 3, 317 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited