OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 8, Iss. 8 — Aug. 1, 2012
  • pp: 439–443

Photoexcitations From Intrachain and Interchain Excitons of Surface Plasmon Mediated Conjugated Polymers for PLED

Kwan Hyun Cho, Kyung Cheol Choi, Je-Hyung Kim, and Yong-Hoon Cho

Journal of Display Technology, Vol. 8, Issue 8, pp. 439-443 (2012)

View Full Text Article

Acrobat PDF (944 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Picosecond time-resolved spectroscopy studies are performed on surface plasmon (SP) mediated conjugated polymers. Huang-Rhys factor and photoluminescence (PL) decay time at low temperature were unchanged with the respect to thickness of Ag nanostructures due to a decrease in the surface plasmon coupling rates (Okamoto , Appl. Phys. Lett., vol. 87, 07112, 2005). However, Huang-Rhys factor and PL decay time at room temperature were increased with respect to the thickness of the Ag nanostructures. Relatively strong emission from the interchain excitons of surface plasmon (SP) mediated conjugated polymers in the film-like Ag nanostructure was verified by PL decay dynamics from time-resolved photoluminescence (TR-PL) measurement.

© 2012 IEEE

Kwan Hyun Cho, Kyung Cheol Choi, Je-Hyung Kim, and Yong-Hoon Cho, "Photoexcitations From Intrachain and Interchain Excitons of Surface Plasmon Mediated Conjugated Polymers for PLED," J. Display Technol. 8, 439-443 (2012)

Sort:  Year  |  Journal  |  Reset


  1. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).
  3. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
  4. E. Hutter, J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16, 1685-1706 (2004).
  5. K. Y. Yang, K. C. Choi, C. W. Ahn, "Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application," Appl. Phys. Lett. 94, 173301 (2009).
  6. M.-K. Kwon, "Surface-plasmon-enhanced light-emitting diodes," Adv. Mater. 20, 1253-1257 (2008).
  7. S. M. Lee, K. C. Choi, "Enhanced emission from BaMgAl10O17:Eu2+ by localized surface plasmon resonance of silver particles," Opt. Express 18, 12144-12152 (2010).
  8. A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, Y. Kuwahara, "Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode," Appl. Phys. Lett. 96, 043307 (2010).
  9. R. H. Friend, "Electroluminescence in conjugated polymers," Nature 397, 121-128 (1999).
  10. J. H. Burroughes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
  11. S. Günes, H. Neugebauer, N. S. Sariciftci, "Conjugated polymer-based organic solar cells," Chem. Rev. 107, 1324-1338 (2007).
  12. M. S. Kim, J. S. Kim, J. C. Cho, M. Shtein, L. J. Guo, J. Kim, "Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography," Appl. Phys. Lett. 90, 123113 (2007).
  13. T.-Q. Nguyen, V. Doan, B. J. Schwartz, "Conjugated polymer aggregates in solution: Control of interchain interactions," J. Chem. Phys. 110, 4068 (1999).
  14. H. Lin, "Fate of excitations in conjugated polymers: Single-molecule spectroscopy reveals nonemissive ‘Dark’ regions in MEH-PPV individual chains," Nano Lett. 9, 4456-4461 (2009).
  15. I. D. W. Samuel, G. Rumbles, C. J. Collison, R. H. Friend, S. C. Moratti, A. B. Holmes, "Picosecond time-resolved photoluminescence of PPV derivatives," Synth. Metals 84, 497-500 (1997).
  16. I. D. W. Samuel, G. Rumbles, C. J. Collison, "Efficient interchain photoluminescence in a high-electron-affinity conjugated polymer," Phys. Rev. B 52, R11573 (1995).
  17. T.-Q. Nguyen, I. B. Martini, J. Liu, B. J. Schwartz, "Controlling interchain interactions in conjugated polymers: The effects of chain morphology on exciton—Exciton annihilation and aggregation in MEH-PPV films," J. Phys. Chem. B 104, 237-255 (2000).
  18. H. Sirringhaus, "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers," Nature 401, 685-688 (1999).
  19. K. H. Cho, S. I. Ahn, S. M. Lee, C. S. Choi, K. C. Choi, "Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer," Appl. Phys. Lett. 97, 193306 (2010).
  20. M. A. T. da Silva, "Identification of the optically active vibrational modes in the photoluminescence of MEH-PPV films," J. Chem. Phys. 128, 094902 (2008).
  21. R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, N. J. Halas, "Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods," ACS Nano 3, 744-752 (2009).
  22. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. M\üllen, W. E. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photon. 3, 654-657 (2009).
  23. M. Yan, L. J. Rothberg, F. Papadimitrakopoulos, M. E. Galvin, T. M. Miller, "Spatially indirect excitons as primary photoexcitations in conjugated polymers," Phys. Rev. Lett. 72, 1104 (1994).
  24. R. Jakubiak, L. J. Rothberg, W. Wan, B. R. Hsieh, "Reduction of photoluminescence quantum yield by interchain interactions in conjugated polymer films," Synth. Metals 101, 230-233 (1999).
  25. Y. Shi, J. Liu, Y. Yang, "Device performance and polymer morphology in polymer light emitting diodes: The control of thin film morphology and device quantum efficiency," J. Appl. Phys. 87, 4254 (2000).
  26. D. McBranch, I. H. Campbell, D. L. Smith, J. P. Ferraris, "Optical determination of chain orientation in electroluminescent polymer films," Appl. Phys. Lett. 66, 1175 (1995).
  27. W. L. Barnes, "Fluorescence near interfaces: The role of photonic mode density," J. Modern Opt. 45, 661-699 (1998).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited