Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 9,
  • Issue 1,
  • pp. 30-36
  • (2013)

Photo-Related Stress Effects in a-SiGe:H Thin Film Transistors for Infrared Image Sensors

Not Accessible

Your library or personal account may give you access

Abstract

The effects of photo-related stress on the electrical performances of a-SiGe:H thin-film transistors (TFTs) were investigated in comparison with a-Si:H TFTs. Compared with a-Si:H TFTs, the a-SiGe:H TFTs show better stability to the light stress because the number of electrons involved in the creation of dangling bonds are smaller in a-SiGe:H TFTs, resulting in less light-induced degradation. However, a larger threshold voltage shift from the positive gate bias was observed due to the higher number of weak bonds in a-SiGe:H TFTs, which leads to a higher gate bias instability than is observed for a-Si:H TFTs. The temperature dependences of the electrical properties in a-SiGe:H TFTs were observed, and they indicated that a-SiGe:H TFTs follow a thermally activated behavior pattern. Based on the thermally activated behavior, a new model predicting the lifetime of a-SiGe:H TFT image sensors was proposed. The instability of the drain current with respect to the stress time under an electrical bias and light was estimated. Based on the calculated lifetime, the a-SiGe:H TFTs are predicted to be reliable for long-term applications in image sensors.

© 2012 IEEE

PDF Article
More Like This
Optical and electrical properties of In2MgO4 thin film for transistors

Jian Ke Yao, Fan Ye, and Ping Fan
Opt. Mater. Express 8(11) 3438-3446 (2018)

Near-infrared femtosecond laser crystallized poly-Si thin film transistors

Yi-Chao Wang, Jia-Min Shieh, Hsiao-Wen Zan, and Ci-Ling Pan
Opt. Express 15(11) 6982-6987 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved