Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 9,
  • Issue 2,
  • pp. 112-121
  • (2013)

Image Quality-Aware Backlight Dimming With Color and Detail Enhancement Techniques

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we propose an advanced backlight dimming technique that preserves the quality of color and details in images even when the backlight luminance of liquid crystal display (LCD) devices is lowered. The proposed backlight dimming technique consists of the following two steps: backlight luminance level selection and pixel compensation. In the first step, to reduce power consumption, the proposed approach selects an optimal level of backlight luminance for a given image based on image quality evaluation that considers the peak signal-to-noise ratio (PSNR) and color distortion level. In the second step, it adaptively adjusts the RGB ratio depending on image details, thereby enhancing image color and details, which are degraded by the lowered backlight luminance level calculated in the first step. The simulation results showed that the proposed method successfully selected the optimal backlight luminance level and prevented severe color distortion, while the benchmark method induced severe color distortion in some images. In addition, for the same backlight luminance level, pixel compensation in the proposed method reduced color difference for color distortion evaluation and the loss rate of edge strength, which showed detail loss by up to 3.58% and 40.55%, compared to benchmark methods, respectively.

© 2013 IEEE

PDF Article
More Like This
Deep-learning-based pixel compensation algorithm for local dimming liquid crystal displays of quantum-dot backlights

Seok-Jeong Song, Young In Kim, Jina Bae, and Hyoungsik Nam
Opt. Express 27(11) 15907-15917 (2019)

Color breakup suppression based on global dimming for field sequential color displays using edge information in images

Fang-Cheng Lin, Zong Qin, Kai-Tung Teng, and Yi-Pai Huang
Opt. Express 27(3) 2335-2343 (2019)

High dynamic range liquid crystal displays with a mini-LED backlight

Guanjun Tan, Yuge Huang, Ming-Chun Li, Seok-Lyul Lee, and Shin-Tson Wu
Opt. Express 26(13) 16572-16584 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved