OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 9, Iss. 4 — Apr. 1, 2013
  • pp: 190–198

Semipolar (20-2-1) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting

Daniel F. Feezell, James S. Speck, Steven P. DenBaars, and Shuji Nakamura

Journal of Display Technology, Vol. 9, Issue 4, pp. 190-198 (2013)


View Full Text Article

Acrobat PDF (1560 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This work examines the effects of polarization-related electric fields on the energy band diagrams, wavelength shift, wave function overlap, and efficiency droop for InGaN quantum wells on various crystal orientations, including polar (0001) (c-plane), semipolar (20-21), semipolar (20-2-1, and nonpolar (10-10) (m-plane). Based on simulations, we show that the semipolar (20-2-1) orientation exhibits excellent potential for the development of high-efficiency, low-droop light-emitting diodes (LEDs). We then present recent advancements in crystal growth, optical performance, and thermal performance of semipolar (20-2-1) LEDs. Finally, we demonstrate a low-droop, high-efficiency single-quantum-well blue semipolar (20-2-1) LED with an external quantum efficiency of more than 50% at 100 A/cm2.

© 2013 IEEE

Citation
Daniel F. Feezell, James S. Speck, Steven P. DenBaars, and Shuji Nakamura, "Semipolar (20-2-1) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting," J. Display Technol. 9, 190-198 (2013)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-9-4-190


Sort:  Year  |  Journal  |  Reset

References

  1. J. Piprek, "Efficiency droop in nitride-based light-emitting diodes," Phys. Stat. Solid. (a) 207, 2217-2225 (2010).
  2. Y. Shen, G. O. Muller, S. Watanabe, N. F. Gardner, A. Munkholm, M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Appl. Phys. Lett. 91, 141101-141101-3 (2007).
  3. A. David, M. J. Grundman, "Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis," Appl. Phys. Lett. 96, 103504-103504-3 (2010).
  4. E. Kioupakis, P. Rinke, K. T. Delaney, C. G. Van de Walle, "Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes," Appl. Phys. Lett. 98, 161107-161107-3 (2011).
  5. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park, "Origin of efficiency droop in GaN-based light-emitting diodes," Appl. Phys. Lett. 91, 183507-183507-3 (2007).
  6. X. Ni, X. Li, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, "Hot electron effects on efficiency degredation in InGaN light-emitting diodes and designs to mitigate them," J. Appl. Phys. 108, 033112-033112-13 (2010).
  7. J. Hader, J. V. Maloney, S. W. Koch, "Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based light-emitting diodes," Appl. Phys. Lett. 96, 221106-221106-3 (2010).
  8. N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, M. R. Krames, "Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2," Appl. Phys. Lett. 91, 243506-243506-3 (2007).
  9. H. Zhao, G. Liu, J. Zhang, J. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express 19, A991-A1007 (2011).
  10. F. Bernardini, V. Fiorentini, D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Phys. Rev. B 56, R10024-R10027 (1997).
  11. V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, P. Lugli, "Effects of macroscopic polarization in III-V nitride multiple quantum wells," Phys. Rev. B 60, 8849-8858 (1998).
  12. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K. H. Ploog, "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes," Nature 406, 865-868 (2000).
  13. K. C. Kim, M. C. Schmidt, H. Sato, F. Wu, N. Fellows, Z. Jia, M. Saito, S. Nakamura, S. P. DenBaars, J. S. Speck, K. Fujito, "Study of nonpolar m-plane InGaN/GaN multiquantum well light emitting diodes grown by homoepitaxial metal-organic chemical vapor deposition," Appl. Phys. Lett. 91, 181120-181120-3 (2007).
  14. D. F. Feezell, M. C. Schmidt, R. M. Farrell, K. C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, S. Nakamura, "AlGaN-cladding-free nonpolar InGaN/GaN laser diodes," Jpn. J. Appl. Phys. 46, L284-L286 (2007).
  15. M. C. Schmidt, K. C. Kim, H. Sato, N. Fellows, H. Masui, S. Nakamura, S. P. DenBaars, J. S. Speck, "High power and high external efficiency m-plane InGaN light-emitting diodes," Jpn. J. Appl. Phys. 46, L126-L128 (2007).
  16. Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. F. Feezell, J. S. Speck, S. P. DenBaars, S. Nakamura, "High-power blue-violet semipolar (20-2-1) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2," Appl. Phys. Express 4, 082104-082104-3 (2011).
  17. Y. Zhao, J. Sonoda, C. C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, S. Nakamura, "30-mW-class high-power and high-efficiency blue semipolar (10-1-1) InGaN/GaN light-emitting diodes obtained by backside roughening technique," Appl. Phys. Express 3, 102101-102101-3 (2010).
  18. S. Yamamoto, Y. Zhao, C. C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, S. Nakamura, "High-efficiency green single-quantum-well green and yellow-green light-emitting diodes on semipolar (20-21), GaN substrates," Appl. Phys. Express 3, 122102-122102-3 (2010).
  19. T. Detchprohm, M. Zhu, Y. Li, Y. Xia, C. Wetzel, E. Preble, L. Liu, T. Paskova, D. Hanser, "Green light emitting diodes on a-plane GaN bulk substrates," Appl. Phys. Lett. 92, 241109-241109-3 (2008).
  20. A. E. Romanov, T. J. Baker, J. S. Speck, "Strain-induced polarization in wurtzite III-nitride semipolar layers," J. Appl. Phys. 100, 023522-023522-10 (2006).
  21. R. Butte, N. Grandjean, Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications (Springer, 2008) pp. 471-480.
  22. S. H. Park, S. L. Chuang, "Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors," Phys. Rev. B 59, 4725-4737 (1999).
  23. T. Takeuchi, H. Amano, I. Akasaki, "Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells," Jpn. J. Appl. Phys. 39, 413-416 (2000).
  24. L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, M. Kneissl, "Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells," Phys. Stat. Solidi (b) 248, 638-646 (2011).
  25. M. V. Bogdanov, K. A. Bulashevich, I. Y. Evstratov, A. I. Zhmakin, S. Y. Karpov, "Coupled modeling of current spreading, thermal effects and light extraction in III-nitride light-emitting diodes," Semicond. Sci. Technol. 23, 125023-125023-10 (2008).
  26. K. A. Bulashevich, V. F. Mymrin, S. Y. Karpov, I. A. Zhmakin, A. I. Zhmakin, "Simulation of visible and ultra-violet group-III nitride light emitting diodes," J. Comput. Phys. 213, 214-238 (2005).
  27. D. S. Sitzov, R. Bhat, A. Zakharian, K. Song, D. Allen, S. Coleman, C. Zah, "Carrier transport in InGaN MQWs of aquamarine- and green-laser diodes," J. Sel. Top. Quantum Electron 17, 1390-1401 (2011).
  28. L. A. Coldren, S. W. Crozine, M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012) pp. 158-186.
  29. A. David, M. J. Grundman, "Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes," Appl. Phys. Lett. 97, 033501-033501-3 (2010).
  30. E. Kioupakis, Q. Yan, C. G. Van de Walle, "Interplay of polarization fileds and auger recombination in the efficiency of nitride light-emitting diodes," Appl. Phys. Lett. 101, 231107-231107-3 (2012).
  31. M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, B. Hahn, "A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes," J. Appl. Phys. 106, 114508-114508-4 (2009).
  32. X. Li, S. Okur, F. Zhang, V. Avrutin, U. Ozgur, H. Morkoc, S. M. Hong, S. H. Yen, T. C. Hsu, A. Matulionis, "Impact of active layer design on InGaN radiative recombination coefficient and LED performance," J. Appl. Phys. 111, 063112-063112-9 (2012).
  33. R. F. Farrell, E. C. Young, F. Wu, S. P. DenBaars, J. S. Speck, "Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices," Semicond. Sci. Technol. 27, 024001-024001-14 (2011).
  34. V. Liuolia, A. Pinos, S. Marcinkevicius, Y. D. Lin, H. Ohta, S. P. DenBaars, S. Nakamura, "Carrier localization in m-plane InGaN/GaN quantum wells probed by scanning near field optical spectroscopy," Appl. Phys. Lett. 97, 151106-033501-3 (2010).
  35. J. Northrup, "GaN and InGaN (11-22) surfaces: Group-III adlayers and indium incorporation," Appl. Phys. Lett. 95, 133107-133107-3 (2009).
  36. Y. Zhao, Q. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, D. F. Feezell, "Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells," Appl. Phys. Lett. 100, 201108-201108-4 (2012).
  37. C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, D. F. Feezell, "High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes," Appl. Phys. Express 5, 062103-062103-3 (2012).
  38. S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota, "Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors," Nature Mat. 5, 810-816 (2006).
  39. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, S. Nakamura, "Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm," Appl. Phys. Lett. 70, 981-983 (1996).
  40. H. Y. Ryu, D. S. Shin, J. I. Shim, "Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material," Appl. Phys. Lett. 100, 131109-131109-4 (2012).
  41. A. David, M. J. Grundman, J. F. Keading, N. F. Gardner, T. G. Mihopoulos, M. R. Krames, "Carrier distribution in (0001) InGaN/GaN multiple quantum well light-emitting diodes," Appl. Phys. Lett. 92, 053502-053502-3 (2008).
  42. Y. R. Wu, R. Shivaraman, K. C. Wang, J. S. Speck, "Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure," Appl. Phys. Lett. 101, 083505-083505-4 (2012).
  43. C. C. Pan, T. Gilbert, N. Pfaff, S. Tanaka, Y. Zhao, D. F. Feezell, J. S. Speck, S. Nakamura, S. P. DenBaars, "Reduction in thermal droop using thick single-quantum-well structure in semipolar (20-2-1) blue light-emitting diodes," Appl. Phys. Express 5, 102103-102103-3 (2012).
  44. D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S. H. Han, M. H. Kim, C. Sone, S. J. Oh, J. K. Kim, "Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities," Appl. Phys. Lett. 100, 081106-081106-3 (2012).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited