OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 9, Iss. 4 — Apr. 1, 2013
  • pp: 212–225

Analysis of Internal Quantum Efficiency and Current Injection Efficiency in III-Nitride Light-Emitting Diodes

Hongping Zhao, Guangyu Liu, Jing Zhang, Ronald A. Arif, and Nelson Tansu

Journal of Display Technology, Vol. 9, Issue 4, pp. 212-225 (2013)

View Full Text Article

Acrobat PDF (3558 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Current injection efficiency and internal quantum efficiency (IQE) in InGaN quantum well (QW) based light emitting diodes (LEDs) are investigated. The analysis is based on current continuity relation for drift and diffusion carrier transport across the QW-barrier systems. A self-consistent 6-band k ⋅ p method is used to calculate the band structure for InGaN QW structure. Carrier-photon rate equations are utilized to describe radiative and non-radiative recombination in the QW and the barrier regions, carrier transport and capture time, and thermionic emission leading to carrier leakage out of the QW. Our model indicates that the IQE in the conventional 24-Å In0.28Ga0.72N-GaN QW structure reaches its peak at low injection current density and reduces gradually with further increase in current due to the large thermionic carrier leakage. The efficiency droop phenomenon at high current density in III-nitride LEDs is thus consistent with the high-driving-current induced quenching in current injection efficiency predicted by our model. The effects of the monomolecular recombination coefficient, Auger recombination coefficient and GaN hole mobility on the current injection efficiency and IQE are studied. Structures combining InGaN QW with thin larger energy bandgap barriers such as AlxGa1-xN, lattice-matched AlxIn1-xN, and lattice-matched AlxGa1-x-yN have been analyzed to improve current injection efficiency and thus minimize droop at high current injection in III-nitride LEDs. Effect of the thickness of the larger energy bandgap barriers (AlGaN, AlInN and AlInGaN) on injection efficiency and IQE are investigated. The use of thin AlGaN barriers shows slight reduction of quenching of the injection efficiency as the current density increases. The use of thin lattice-matched AlInN or AlInGaN barriers shows significant suppression of efficiency-droop in nitride LEDs.

© 2013 IEEE

Hongping Zhao, Guangyu Liu, Jing Zhang, Ronald A. Arif, and Nelson Tansu, "Analysis of Internal Quantum Efficiency and Current Injection Efficiency in III-Nitride Light-Emitting Diodes," J. Display Technol. 9, 212-225 (2013)

Sort:  Year  |  Journal  |  Reset


  1. S. F. Chichibu, T. Azuhata, M. Sugiyama, T. Kitamura, Y. Ishida, H. Okumura, H. Nakanishi, T. Sota, T. Mukai, "Optical and structural studies in InGaN quantum well structure laser diodes," J. Vacuum Sci. & Technol. B 19, 2177-2183 (2001).
  2. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, 2L74-L76 (1996).
  3. J. Zhang, "Enhanced luminescence in InGaN multiple quantum wells with quaternary AlInGaN barriers," Appl. Phys. Lett. 77, 2668-2670 (2000).
  4. X. Guo, Y.-L. Li, E. F. Schubert, "Efficiency of GaN/InGaN light-emitting diodes with interdigitated mesa geometry," Appl. Phys. Lett. 79, 1936-1938 (2001).
  5. S. H. Park, D. Ahn, S. L. Chuang, "Electronic and optical properties of a- and m-plane wurtzite InGaN– GaN quantum wells," IEEE J. Quantum Electron. 43, 1175-1182 (2007).
  6. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, J. S. Speck, "Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices," Semicond. Sci. Technol. 27, (2012) Art. 024001.
  7. R. A. Arif, Y. K. Ee, N. Tansu, "Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes," Appl. Phys. Lett. 91, 091110 (2007).
  8. H. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express 19, A991-A1007 (2011).
  9. H. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, N. Tansu, "Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime," IET Optoelectron. 3, 283-295 (2009).
  10. S.-H. Park, D. Ahn, B.-H. Koo, J.-W. Kim, "Dip-shaped InGaN/GaN quantum-well light-emitting diodes with high efficiency," Appl. Phys. Lett. 95, 063507 (2009).
  11. C. T. Liao, M. C. Tsai, B. T. Liou, Y. K. Kuo, "Improvement in output power of a 460 nm InGaN light-emitting diode using staggered quantum well," J. Appl. Phys. 108, (2010).
  12. L. Y. Zhang, K. Cheng, H. Liang, R. Lieten, M. Leys, G. Borghs, "Photoluminescence studies of polarization effects in InGaN/(In)GaN multiple quantum well structures," Jpn. J. Appl. Phys. 51, (2012).
  13. R. A. Arif, H. Zhao, N. Tansu, "Type-II InGaN-GaNAs quantum wells for lasers applications," Appl. Phys. Lett. 92, 011104 (2008).
  14. H. Zhao, R. A. Arif, N. Tansu, "Self-consistent gain analysis of type-II `W' InGaN–GaNAs quantum well lasers," J. Appl. Phys. 104, 043104 (2008).
  15. S. H. Park, Y. T. Lee, J. Park, "Optical properties of type-II InGaN/GaAsN/GaN quantum wells," Opt. Quantum Electron. 41, 779-785 (2009).
  16. H. Zhao, G. Liu, N. Tansu, "Analysis of InGaN-delta-InN quantum wells for light-emitting diodes," Appl. Phys. Lett. 97, 131114 (2010).
  17. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, M. A. Banas, "Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes," Appl. Phys. Lett. 91, 231114 (2007).
  18. M. F. Schubert, "Polarization matched GaInN/AlGaInN multi-quantum-well light emitting diodes with reduced efficiency droop," Appl. Phys. Lett. 93, 041102 (2008).
  19. J. Xu, "Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization matched GaInN/GaInN multi quantum well light-emitting diodes," Appl. Phys. Lett. 94, 011113 (2009).
  20. H. Zhao, G. Y. Liu, R. A. Arif, N. Tansu, "Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes," Solid-State Electron. 54, 1119-1124 (2010).
  21. G.-B. Lin, D. Meyaard, J. Cho, E. F. Schubert, H. Shim, C. Sone, "Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency," Appl. Phys. Lett. 100, 161106 (2012).
  22. J. Wang, L. Wang, L. Wang, Z. Hao, Y. Luo, A. Dempewolf, M. Muller, F. Bertram, J. Christen, "An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes," J. Appl. Phys. 112, 023107 (2012).
  23. I. E. Titkov, "Blue light emitting diode internal and injection efficiency," AIP Adv. 2, 032117 (2012).
  24. J. Xie, X. Ni, Q. Fan, R. Shimada, U. Ozgur, H. Morkoc, "On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers," Appl. Phys. Lett. 93, 121107 (2008).
  25. X. F. Ni, Q. Fan, R. Shimada, U. Ozgur, H. Morkoc, "Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells," Appl. Phys. Lett. 93, 171113 (2008).
  26. M. Maier, K. Kohler, M. Kunzer, W. Pletschen, J. Wagner, "Reduced nonthermal rollover of wide-well GaInN light-emitting diodes," Appl. Phys. Lett. 94, 041103 (2009).
  27. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Appl. Phys. Lett. 91, 141101 (2007).
  28. N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, M. R. Krames, "Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2," Appl. Phys. Lett. 91, 243506 (2007).
  29. K. T. Delaney, P. Rinke, C. G. V. d. Walle, "Auger recombination rates in nitrides from first principles," Appl. Phys. Lett. 94, 191109 (2009).
  30. E. Kioupakis, P. Rinke, A. Schleife, F. Bechstedt, C. G. Van de Walle, "Free-carrier absorption in nitrides from first principles," Phys. Rev. B 81, (2010).
  31. E. Kioupakis, P. Rinke, K. T. Delaney, C. G. Van de Walle, "Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes," Appl. Phys. Lett. 98, 161107 (2011).
  32. A. Efremov, N. Bochkareva, R. Gorbunov, D. Lavrinovich, Y. Rebane, D. Tarkhin, Y. Shreter, "Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs," Semiconductors 40, 605-610 (2006).
  33. J. Y. Chang, Y. K. Kuo, "Influence of polarization-matched AlGaInN barriers in blue InGaN light-emitting diodes," Optics Lett. 37, 1574-1576 (2012).
  34. S. Choi, H. J. Kim, S. S. Kim, J. Liu, J. Kim, J. H. Ryou, R. D. Dupuis, A. M. Fischer, F. A. Ponce, "Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer," Appl. Phys. Lett. 96, 221105 (2010).
  35. Y. K. Kuo, J. Y. Chang, M. C. Tsai, "Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer," Opt. Lett. 35, 3285-3287 (2010).
  36. C. H. Wang, S. P. Chang, W. T. Chang, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, "Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells," Appl. Phys. Lett. 97, 181101 (2010).
  37. P. M. Tu, C. Y. Chang, S. C. Huang, C. H. Chiu, J. R. Chang, W. T. Chang, D. S. Wuu, H. W. Zan, C. C. Lin, H. C. Kuo, C. P. Hsu, "Investigation of efficiency droop for InGaN-based UV light-emitting diodes with InAlGaN barrier," Appl. Phys. Lett. 98, 211107 (2011).
  38. Y. K. Kuo, T. H. Wang, J. Y. Chang, "Blue InGaN light-emitting diodes with multiple GaN-InGaN Barriers," IEEE J. Quantum Electron. 48, 946-951 (2012).
  39. G. Y. Liu, J. Zhang, C. K. Tan, N. Tansu, "Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum wells light-emitting diodes," IEEE Photon. J. .
  40. N. Tansu, L. J. Mawst, "Current injection efficiency of InGaAsN quantum-well lasers," J. Appl. Phys. 97, 054502 (2005).
  41. S. L. Chuang, C. S. Chang, "A band-structure model of strained quantum-well wurtzite semiconductors," Semicond. Sci. Technol. 12, 252-263 (1997).
  42. S. L. Chuang, "Optical gain of strained wurtzite GaN quantum-well lasers," IEEE J. Quantum Electron. 32, 1791-1800 (1996).
  43. S. L. Chuang, Physics of Optoelectronics Devices (Wiley, 1995).
  44. H. Zhao, R. A. Arif, Y. K. Ee, N. Tansu, "Self-consistent analysis of strain compensated InGaN-AlGaN quantum wells for lasers and light emitting diodes," IEEE J. Quantum Electron. 45, 66-78 (2009).
  45. H. Schneider, K. V. Klitzing, "Thermionic emission and Gaussian transport of holes in a GaAs/AlGaAs As multiple-quantum-well structure," Phys. Rev. B 38, 6160-6165 (1988).
  46. N. Tansu, L. J. Mawst, "The role of hole-leakage in 1300-nm InGaAsN quantum well lasers," Appl. Phys. Lett. 82, 1500-1502 (2003).
  47. I. Vurgaftman, J. R. Meyer, "Band parameters for nitrogen-containing semiconductors," J. Appl. Phys. 94, 3675-3696 (2003).
  48. I. Vurgaftman, J. R. Meyer, Nitride Semiconductor Devices (Wiley, 2009) pp. 13-48.
  49. T.-S. Yeh, J.-M. Wu, W.-H. Lan, "Electrical properties and optical bandgaps of AlInN films by reactive sputtering," J. Crys. Growth 310, 5308-5311 (2008).
  50. M. Farahmand, "Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: Binaries and ternaries," IEEE Trans. Electron Devices 48, 535-542 (2001).
  51. P. Kozodoy, H. Xing, S. P. DenBaars, U. K. Mishra, A. Saxler, R. Perrin, S. Elhamri, W. C. Mitchel, "Heavy doping effects in Mg-doped GaN," J. Appl. Phys. 87, 1832-1835 (2000).
  52. Y.-C. Lu, "Carrier trapping effects on photoluminescence decay time in InGaN/GaN quantum wells with nanocluster structures," J. Appl. Phys. 101, 063511 (2007).
  53. J. K. Son, "Radiative and non-radiative transitions in blue quantum wells embedded in AlInGaN-based laser diodes," Phys. Stat. Sol. (c) 4, 2780-2783 (2007).
  54. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, S. Lutgen, "On the importance of radiative and Auger losses in GaN-based quantum wells," Appl. Phys. Lett. 92, 261103 (2008).
  55. T. Mukai, M. Yamada, S. Nakamura, "Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes," Jpn. J. Appl. Phys. 38, 3976-3981 (1999).
  56. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, M. G. Craford, "Status and future of high-power light-emitting diodes for solid-state lighting," J. Display Technol. 3, 160-175 (2007).
  57. M. A. Khan, "AlGaN multiple quantum well based deep UV LEDs and their applications," Phys. Stat. Sol. (a) 203, 1764-1770 (2006).
  58. E. Kuokstis, W. H. Sun, M. Shatalov, J. W. Yang, M. A. Khan, "Role of alloy fluctuations in photoluminescence dynamics of AlGaN epilayers," Appl. Phys. Lett. 88, 261905 (2006).
  59. H. P. D. Schenk, M. Nemoz, M. Korytov, P. Vennegues, A. D. Drager, A. Hangleiter, "Indium incorporation dynamics into AlInN ternary alloys for laser structures lattice matched to GaN," Appl. Phys. Lett. 93, 081116 (2008).
  60. S. Hernandez, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cusco, "Structural and optical properties of MOCVD InAlN epilayers," Mater. Res. Soc. Symp. Proc. (2005) pp. 0892-FF23.
  61. G. Liu, J. Zhang, X.-H. Li, G. S. Huang, T. Paskova, K. R. Evans, H. Zhao, N. Tansu, "Metalorganic vapor phase epitaxy and characterizations of nearly-lattice-matched AlInN alloys on GaN/sapphire templates and free-standing GaN substrates," J. Cryst. Growth 340, 66-73 (2012).
  62. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park, "Origin of efficiency droop in GaN-based light-emitting diodes," Appl. Phys. Lett. 91, (2007).
  63. A. Knauer, H. Wenzel, T. Kolbe, S. Einfeldt, M. Weyers, M. Kneissl, G. Trankle, "Effect of the barrier composition on the polarization fields in near UV InGaN light emitting diodes," Appl. Phys. Lett. 92, 191912 (2008).
  64. C. C. Pan, S. Tanaka, F. Wu, Y. J. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, D. Feezell, "High-power, low-efficiency-droop semipolar (2021) single-quantum-well blue light-emitting diodes," Appl. Phys. Exp. 5, (2012).
  65. Y. J. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, S. Nakamura, "High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2," Appl. Phys. Exp. 4, (2011).
  66. L. F. Xu, D. Patel, C. S. Menoni, J. Y. Yeh, L. J. Mawst, N. Tansu, "Experimental evidence of the impact of nitrogen on carrier capture and escape times in InGaAsN/GaAs single quantum well," IEEE Photon. J. 4, 2262-2271 (2012).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited