OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 9, Iss. 4 — Apr. 1, 2013
  • pp: 226–233

On the Effect of Step-Doped Quantum Barriers in InGaN/GaN Light Emitting Diodes

Zi-Hui Zhang, Swee Tiam Tan, Zhengang Ju, Wei Liu, Yun Ji, Zabu Kyaw, Yilmaz Dikme, Xiao Wei Sun, and Hilmi Volkan Demir

Journal of Display Technology, Vol. 9, Issue 4, pp. 226-233 (2013)


View Full Text Article

Acrobat PDF (1176 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

InGaN/GaN light-emitting diodes (LEDs) make an important class of optoelectronic devices, increasingly used in lighting and displays. Conventional InGaN/GaN LEDs of c-orientation exhibit strong internal polarization fields and suffer from significantly reduced radiative recombination rates. A reduced polarization within the device can improve the optical matrix element, thereby enhancing the optical output power and efficiency. Here, we have demonstrated computationally that the step-doping in the quantum barriers is effective in reducing the polarization-induced fields and lowering the energy barrier for hole transport. Also, we have proven experimentally that such InGaN/GaN LEDs with Si step-doped quantum barriers indeed outperform LEDs with wholly Si-doped barriers and those without doped barriers in terms of output power and external quantum efficiency. The consistency of our numerical simulation and experimental results indicate the effects of Si step-doping in suppressing quantum-confined stark effect and enhancing the hole injection, and is promising in improving the InGaN/GaN LED performance.

© 2012 IEEE

Citation
Zi-Hui Zhang, Swee Tiam Tan, Zhengang Ju, Wei Liu, Yun Ji, Zabu Kyaw, Yilmaz Dikme, Xiao Wei Sun, and Hilmi Volkan Demir, "On the Effect of Step-Doped Quantum Barriers in InGaN/GaN Light Emitting Diodes," J. Display Technol. 9, 226-233 (2013)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-9-4-226


Sort:  Year  |  Journal  |  Reset

References

  1. S. Nakamura, M. Senoh, T. Mukai, "P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes," Jpn. J. Appl.Phys. Pt. 2-Lett. 32, L8-L11 (1993).
  2. S. T. Tan, X. W. Sun, H. V. Demir, S. P. DenBaars, "Advances in the LED materials and architectures for energy-saving solid-state lighting toward ‘lighting revolution’," IEEE Photon. J. 4, 613-619 (2012).
  3. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Y. T. Rebane, D. V. Tarkhin, Y. G. Shreter, "Effect of the Joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs," Semiconductors 40, 605-610 (2006).
  4. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park, "Origin of efficiency droop in GaN-based light-emitting diodes," Appl. Phys. Lett. 91, 183507-1-183507-3 (2007).
  5. W. Chow, M. H. Crawford, J. Y. Tsao, M. Kneissl, "Internal efficiency of InGaN light-emitting diodes: Beyond a quasiequilibrium model," Appl. Phys. Lett. 97, 121105-1-121105-3 (2010).
  6. H. Y. Ryu, J. I. Shim, "Effect of current spreading on the efficiency droop of InGaN light-emitting diodes," Opt. Express 19, 2886-2894 (2011).
  7. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Appl. Phys. Lett. 91, 141101-1-141101-3 (2007).
  8. Y. J. Lee, C. H. Chen, C. J. Lee, "Reduction in the efficiency-droop effect of InGaN green light-emitting diodes using gradual quantum wells," IEEE Photon. Technol. Lett. 22, 1506-1508 (2010).
  9. C. H. Wang, S. P. Chang, W. T. Chang, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, "Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells," Appl. Phys. Lett. 97, 181101-1-181101-3 (2010).
  10. H. P. Zhao, G. Y. Liu, R. A. Arif, N. Tansu, "Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes," Solid-State Electron. 54, 1119-1124 (2010).
  11. S. J. Huang, Y. K. Su, C. Y. Tseng, S. C. Lin, H. C. Hsu, "Improvement of light intensity for nitride-based multi-quantum well light emitting diodes by stepwise-stage electron emitting layer," Appl. Phys. Express 3, 122106-1-122106-3 (2010).
  12. S. J. Lee, S. H. Han, C. Y. Cho, S. P. Lee, D. Y. Noh, H. W. Shim, Y. C. Kim, S. J. Park, "Improvement of GaN-based light-emitting diodes using p-type AlGaN/GaN superlattices with a graded Al composition," J. Phys. D—Appl. Phys. 44, 105101 (2011).
  13. Y. K. Kuo, J. Y. Chang, M. C. Tsai, "Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer," Opt. Lett. 35, 3285-3287 (2010).
  14. S. Choi, H. J. Kim, S. S. Kim, J. Liu, J. Kim, J. H. Ryou, R. D. Dupuis, A. M. Fischer, F. A. Ponce, "Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer," Appl. Phys. Lett. 96, 221105-1-221105-3 (2010).
  15. J. Simon, V. Protasenko, C. X. Lian, H. L. Xing, D. Jena, "Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures," Science 327, 60-64 (2010).
  16. R. A. Arif, Y. K. Ee, N. Tansu, "Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes," Appl. Phys. Lett. 91, 091110-1-091110-3 (2007).
  17. R. A. Arif, H. P. Zhao, Y. K. Ee, N. Tansu, "Spontaneous emission and characteristics of staggered InGaN quantum-well light-emitting diodes," IEEE J. Quantum Electron. 44, 573-580 (2008).
  18. H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express 19, A991-A1007 (2011).
  19. H. P. Zhao, G. Y. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, N. Tansu, "Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile," Appl. Phys. Lett. 95, 061104-1-061104-3 (2009).
  20. H. P. Zhao, N. Tansu, "Optical gain characteristics of staggered InGaN quantum wells lasers," J. Appl. Phys. 107, 113110-1-113110-12 (2010).
  21. J. Zhang, N. Tansu, "Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes," J. Appl. Phys. 110, 113110-1-113110-5 (2011).
  22. J. H. Son, J. L. Lee, "Strain engineering for the solution of efficiency droop in InGaN/GaN light-emitting diodes," Opt. Express 18, 5466-5471 (2010).
  23. H. P. Zhao, R. A. Arif, N. Tansu, "Self-consistent gain analysis of type-II ‘W’ InGaN-GaNAs quantum well lasers," J. Appl. Phys. 104, 043104-1-043104-7 (2008).
  24. H. P. Zhao, G. Y. Liu, N. Tansu, "Analysis of InGaN-delta-InN quantum wells for light-emitting diodes," Appl. Phys. Lett. 97, 131114-1-131114-3 (2010).
  25. S. H. Park, D. Ahn, B. H. Koo, J. E. Oh, "Optical gain improvement in type-II InGaN/GaNSb/GaN quantum well structures composed of InGaN/and GaNSb layers," Appl. Phys. Lett. 96, 051106-1-051106-3 (2010).
  26. J. Zhang, H. P. Zhao, N. Tansu, "Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid-and deep-ultraviolet spectral regimes," Appl. Phys. Lett. 98, 171111-1-171111-3 (2011).
  27. R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. Denbaars, J. S. Speck, S. Nakamura, "Low-threshold-current-density AlGaN-cladding-free m -plane InGaN/GaN laser diodes," Appl. Phys. Lett. 96, 231113-1-231113-3 (2010).
  28. R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, S. Nakamura, "Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes," Appl. Phys. Lett. 99, 171115-1-171115-3 (2011).
  29. L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, J. F. Chen, W. C. Lai, C. H. Kuo, C. H. Chen, J. K. Sheu, "Influence of Si-doping on the characteristics of InGaN-GaN multiple quantum-well blue light emitting diodes," IEEE J. Quantum Electron. 38, 446-450 (2002).
  30. Z. Zheng, Z. Chen, Y. Xian, B. Fan, S. Huang, W. Jia, Z. Wu, G. Wang, H. Jiang, "Enhanced electrostatic discharge properties of nitride-based light-emitting diodes with inserting Si-delta-doped layers," Appl. Phys. Lett. 99, 111109-1-111109-3 (2011).
  31. H. P. D. Schenk, A. Bavard, E. Frayssinet, X. Song, F. Cayrel, H. Ghouli, M. Lijadi, L. Naïm, M. Kennard, Y. Cordier, D. Rondi, D. Alquier, "Delta-doping of epitaxial GaN layers on large diameter Si(111) substrates," Appl. Phys. Express 5, 025504-1-025504-3 (2012).
  32. J. H. Ryou, J. Limb, W. Lee, J. P. Liu, Z. Lochner, D. W. Yoo, R. D. Dupuis, "Effect of silicon doping in the quantum-well barriers on the electrical and optical properties of visible green light-emitting diodes," IEEE Photon. Technol. Lett. 20, 1769-1771 (2008).
  33. M. K. Kwon, K. Park, S. H. Baek, J. Y. Kim, S. J. Park, "Si delta doping in a GaN barrier layer of InGaN/GaN multiquantum well for an efficient ultraviolet light-emitting diode," Journal of Appl. Phys. 97, 106109-1-106109-3 (2005).
  34. D. Zhu, A. N. Noemaun, M. F. Schubert, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, "Enhanced electron capture and symmetrized carrier distribution in GaInN light-emitting diodes having tailored barrier doping," Appl. Phys. Lett. 96, 121110-1-121110-3 (2010).
  35. V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, P. Lugli, "Effects of macroscopic polarization in III–V nitride multiple quantum wells," Phys. Rev. B 60, 8849-8858 (1999).
  36. L. Wang, C. M. Lu, J. N. Lu, L. Liu, N. Y. Liu, Y. J. Chen, Y. F. Zhang, E. D. Gu, X. D. Hu, "Influence of carrier screening and band filling effects on efficiency droop of InGaN light emitting diodes," Opt. Express 19, 14182-14187 (2011).
  37. Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, H. V. Demir, "On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer," Appl. Phys. Lett. 100, 123503-1-123503-3 (2012).
  38. Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, M. D. Dawson, "Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes," J. Appl. Phys. 107, 013103-1-013103-6 (2010).
  39. APSYS by Crosslight Software Inc.BurnabyCanada http://www.crosslight.com.
  40. H. Zhao, R. A. Arif, Y. K. Ee, N. Tansu, "Self-cnsistent analysis of strain-compensated InGaN-AlGaN quantum wells for lasers and light-emitting diodes," IEEE J. Quantum Electron. 45, 66-78 (2009).
  41. K. T. Delaney, P. Rinke, C. G. Van De Walle, "Auger recombination rates in nitrides from first principles," Appl. Phys. Lett. 94, 191109-1-191109-3 (2009).
  42. J. Piprek, "Efficiency droop in nitride-based light-emitting diodes," Phys. Status Solid. a—Appl. Mater. Sci. 207, 2217-2225 (2010).
  43. V. Fiorentini, F. Bernardini, O. Ambacher, "Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures," Appl. Phys. Lett. 80, 1204-1206 (2002).
  44. I. Vurgaftman, J. R. Meyer, "Band parameters for nitrogen-containing semiconductors," J. Appl. Phys. 94, 3675-3696 (2003).
  45. T. Deguchi, A. Shikanai, K. Torii, T. Sota, S. Chichibu, S. Nakamura, "Luminescence spectra from InGaN multiquantum wells heavily doped with Si," Appl. Phys. Lett. 72, 3329-3331 (1998).
  46. L. T. Romano, C. G. Van de Walle, J. W. Ager, W. Gotz, R. S. Kern, "Effect of Si doping on strain, cracking, and microstructure in GaN thin films grown by metalorganic chemical vapor deposition," J. Appl. Phys. 87, 7745-7752 (2000).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited