OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 9, Iss. 4 — Apr. 1, 2013
  • pp: 226–233

On the Effect of Step-Doped Quantum Barriers in InGaN/GaN Light Emitting Diodes

Zi-Hui Zhang, Swee Tiam Tan, Zhengang Ju, Wei Liu, Yun Ji, Zabu Kyaw, Yilmaz Dikme, Xiao Wei Sun, and Hilmi Volkan Demir

Journal of Display Technology, Vol. 9, Issue 4, pp. 226-233 (2013)


View Full Text Article

Acrobat PDF (1176 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

InGaN/GaN light-emitting diodes (LEDs) make an important class of optoelectronic devices, increasingly used in lighting and displays. Conventional InGaN/GaN LEDs of c-orientation exhibit strong internal polarization fields and suffer from significantly reduced radiative recombination rates. A reduced polarization within the device can improve the optical matrix element, thereby enhancing the optical output power and efficiency. Here, we have demonstrated computationally that the step-doping in the quantum barriers is effective in reducing the polarization-induced fields and lowering the energy barrier for hole transport. Also, we have proven experimentally that such InGaN/GaN LEDs with Si step-doped quantum barriers indeed outperform LEDs with wholly Si-doped barriers and those without doped barriers in terms of output power and external quantum efficiency. The consistency of our numerical simulation and experimental results indicate the effects of Si step-doping in suppressing quantum-confined stark effect and enhancing the hole injection, and is promising in improving the InGaN/GaN LED performance.

© 2012 IEEE

Citation
Zi-Hui Zhang, Swee Tiam Tan, Zhengang Ju, Wei Liu, Yun Ji, Zabu Kyaw, Yilmaz Dikme, Xiao Wei Sun, and Hilmi Volkan Demir, "On the Effect of Step-Doped Quantum Barriers in InGaN/GaN Light Emitting Diodes," J. Display Technol. 9, 226-233 (2013)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-9-4-226

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited