OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 9, Iss. 6 — Jun. 1, 2013
  • pp: 469–475

Interlayers for Efficient Electron Injection in Polymer LEDs

Michael J. Hartel, Jegadesan Subbiah, and Franky So

Journal of Display Technology, Vol. 9, Issue 6, pp. 469-475 (2013)


View Full Text Article

Acrobat PDF (1210 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Considerable efforts have been devoted to realize efficient electron injection in polymer light-emitting diodes (PLEDs) for better charge balance and higher efficiencies. Efficient electron injection can be achieved through interfacial engineering such as modification of electrodes using self-assembled monolayers and introduction of polymer interlayer. The focus of this paper is to review the materials, device structures and performance of PLEDs incorporating polymer interlayers.

© 2013 IEEE

Citation
Michael J. Hartel, Jegadesan Subbiah, and Franky So, "Interlayers for Efficient Electron Injection in Polymer LEDs," J. Display Technol. 9, 469-475 (2013)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-9-6-469


Sort:  Year  |  Journal  |  Reset

References

  1. L. S. Hung, C. W. Tang, M. G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode," Appl. Phys. Lett. 70, 152 (1997).
  2. P. Piromreun, H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, P. J. Brock, "Role of CsF on electron injection into a conjugated polymer," Appl. Phys. Lett. 77, 2403 (2000).
  3. J. Brondijk, X. Li, H. Akkerman, P. Blom, B. de Boer, "Microcontact printing of self-assembled monolayers to pattern the light-emission of polymeric light-emitting diodes," Appl. Phys. A: Mater. Sci. Process. 95, 1-5 (2009).
  4. W. Chen, C. Huang, X. Y. Gao, L. Wang, C. G. Zhen, D. Qi, S. Chen, H. L. Zhang, K. P. Loh, Z. K. Chen, A. T. S. Wee, "Tuning the hole injection barrier at the organic/metal interface with self-assembled functionalized aromatic thiols," J. Phys. Chem. B 110, 26075-26080 (2006).
  5. J.-P. Hong, A.-Y. Park, S. Lee, J. Kang, N. Shin, D. Y. Yoon, "Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors," Appl. Phys. Lett. 92, 143311-143311-3 (2008).
  6. X. Cheng, Y.-Y. Noh, J. Wang, M. Tello, J. Frisch, R.-P. Blum, A. Vollmer, J. P. Rabe, N. Koch, H. Sirringhaus, "Controlling electron and hole charge injection in ambipolar organic field effect transistors by self assembled monolayers," Adv. Funct. Mater. 19, 2407-2415 (2009).
  7. C. Adachi, T. Tsutsui, S. Saito, "Organic electroluminescent device having a hole conductor as an emitting layer," Appl. Phys. Lett. 55, 1489-1491 (1989).
  8. B. Schulz, M. Bruma, L. Brehmer, "Aromatic poly(1, 3, 4-oxadiazoe)s as advanced materials," Adv. Mater. 9, 601-613 (1997).
  9. C. Wang, M. Kilitziraki, L.-O. Pålsson, M. R. Bryce, A. P. Monkman, I. D. W. Samuel, "Polymeric alkoxy PBD [2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole] for light-emitting diodes," Adv. Funct. Mater. 11, 47-50 (2001).
  10. D. D. Gebler, Y. Z. Wang, J. W. Blatchford, S. W. Jessen, L.-B. Lin, T. L. Gustafson, H. L. Wang, T. M. Swager, A. G. MacDiarmid, A. J. Epstein, "Blue electroluminescent devices based on soluble poly(p pyridine)," J. Appl. Phys. 78, 4264-4266 (1995).
  11. T. Yamamoto, H. Suganuma, Y. Saitoh, T. Maruyama, T. Inoue, "Excimer-type electroluminescence and carrier-transporting properties of electron-accepting π-conjugated polymers," Jpn. J. Appl. Phys. 35, 2L1142-L1144 (1996).
  12. S. Dailey, M. Halim, E. Rebourt, L. E. Horsburgh, I. D. W. Samuel, A. P. Monkman, "An efficient electron-transporting polymer for light-emitting diodes," J. Phys.: Condensed Matter 10, 5171-5178 (1998).
  13. H. Wu, F. Huang, Y. Mo, W. Yang, D. Wang, J. Peng, Y. Cao, "Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol/water soluble conjugated polymers," Adv. Mater. 16, 1826-1830 (2004).
  14. W. Ma, P. K. Iyer, X. Gong, B. Liu, D. Moses, G. C. Bazan, A. J. Heeger, "Water/methanol-soluble conjugated copolymer as an electron-transport layer in polymer light-emitting diodes," Adv. Mater. 17, 274-277 (2005).
  15. G. Zhou, Y. Geng, Y. Cheng, Z. Xie, L. Wang, X. Jing, F. Wang, "Efficient blue electroluminescence from neutral alcohol-soluble polyfluorenes with aluminum cathode," Appl. Phys. Lett. 89, 233501-233501-3 (2006).
  16. S.-H. Oh, S.-I. Na, Y.-C. Nah, D. Vak, S.-S. Kim, D.-Y. Kim, "Novel cationic water-soluble polyfluorene derivatives with ion-transporting side groups for efficient electron injection in PLEDs," Organic Electron. 8, 773-783 (2007).
  17. F. Huang, H. Wu, J. Peng, W. Yang, Y. Cao, "Polyfluorene polyelectrolytes and their precursors processable from environment-friendly solvents (alcohol or water) for PLED applications," Current Organic Chem. 11, 1207-1219 (2007).
  18. H. Wu, F. Huang, Y. Mo, W. Yang, D. Wang, J. Peng, Y. Cao, "Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers," Adv. Mater. 16, 1826-1830 (2004).
  19. F. Huang, Y. Zhang, M. S. Liu, A. K.-Y. Jen, "Electron-rich alcohol-soluble neutral conjugated polymers as highly efficient electron-injecting materials for polymer light-emitting diodes," Adv. Funct. Mater. 19, 2457-2466 (2009).
  20. A. P. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, "Electron transport materials for organic light-emitting diodes," Chem. Mater. 16, 4556-4573 (2004).
  21. A. Nollau, M. Pfeiffer, T. Fritz, K. Leo, "Controlled n-type doping of a molecular organic semiconductor: Naphthalenetetracarboxylic dianhydride (NTCDA) doped with bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF)," J. Appl. Phys. 87, 4340-4343 (2000).
  22. M. Pfeiffer, K. Leo, X. Zhou, J. Huang, M. Hofmann, A. Werner, J. Blochwitz-Nimoth, "Doped organic semiconductors: Physics and application in light emitting diodes," Organic Electron. 4, 89-103 (2003).
  23. K. R. Choudhury, J. Yoon, F. So, "LiF as an n-dopant in tris(8-hydroxyquinoline) aluminum thin films," Adv. Mater. 20, 1456-1461 (2008).
  24. F. Huang, P.-I. Shih, M. S. Liu, C.-F. Shu, A. K.-Y. Jen, "Lithium salt doped conjugated polymers as electron transporting materials for highly efficient blue polymer light-emitting diodes," Appl. Phys. Lett. 93, 243302-243302-3 (2008).
  25. X. Zhou, M. Pfeiffer, J. S. Huang, J. Blochwitz-Nimoth, D. S. Qin, A. Werner, J. Drechsel, B. Maennig, K. Leo, "Low-voltage inverted transparent vacuum deposited organic light-emitting diodes using electrical doping," Appl. Phys. Lett. 81, 922-924 (2002).
  26. J. Blochwitz, T. Fritz, M. Pfeiffer, K. Leo, D. M. Alloway, P. A. Lee, N. R. Armstrong, "Interface electronic structure of organic semiconductors with controlled doping levels," Organic Electron. 2, 97-104 (2001).
  27. Y. Cai, H. X. Wei, J. Li, Q. Y. Bao, X. Zhao, S. T. Lee, Y. Q. Li, J. X. Tang, "Mechanism of Cs2CO3 as an n-type dopant in organic electron-transport film," Appl. Phys. Lett. 98, 113304-113304-3 (2011).
  28. F. Huang, P.-I. Shih, C.-F. Shu, Y. Chi, A. K.-Y. Jen, "Highly efficient polymer white-light-emitting diodes based on lithium salts doped electron transporting layer," Adv. Mater. 21, 361-365 (2009).
  29. T. Ye, M. Zhu, J. Chen, D. Ma, C. Yang, W. Xie, S. Liu, "Efficient multilayer electrophosphorescence white polymer light-emitting diodes with aluminum cathodes," Organic Electron. 12, 154-160 (2011).
  30. J. Huang, Z. Xu, Y. Yang, "Low work function surface formed by solution processed and thermally deposited nanoscale layers of cesium carbonate," Adv. Funct. Mater. 17, 1966-1973 (2007).
  31. Y. Li, D.-Q. Zhang, L. Duan, R. Zhang, L.-D. Wang, Y. Qiu, "Elucidation of the electron injection mechanism of evaporated cesium carbonate cathode interlayer for organic light-emitting diodes," Appl. Phys. Lett. 90, 012119-012119-3 (2007).
  32. C.-I. Wu, C.-T. Lin, Y.-H. Chen, M.-H. Chen, Y.-J. Lu, C.-C. Wu, "Electronic structures and electron-injection mechanisms of cesium-carbonate-incorporated cathode structures for organic light-emitting devices," Appl. Phys. Lett. 88, 2104 (2006).
  33. T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H. Burroughes, F. Cacialli, "Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes," J. Appl. Phys. 93, 6159-6172 (2003).
  34. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, "Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer," Appl. Phys. Lett. 75, 1679 (1999).
  35. I. H. Campbell, T. W. Hagler, D. L. Smith, J. P. Ferraris, "Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures," Phys. Rev. Lett. 76, 1900-1903 (1996).
  36. P. A. Lane, P. J. Brewer, J. Huang, D. D. C. Bradley, J. C. deMello, "Elimination of hole injection barriers by conducting polymer anodes in polyfluorene light-emitting diodes," Phys. Rev. B 74, 125320 (2006).
  37. M. Liess, S. Jeglinski, Z. V. Vardeny, M. Ozaki, K. Yoshino, Y. Ding, T. Barton, "Electroabsorption spectroscopy of luminescent and nonluminescent π-conjugated polymers," Phys. Rev. B 56, 15712-15724 (1997).
  38. S. J. Martin, G. L. Verschoor, M. A. Webster, A. B. Walker, "The internal electric field distribution in bilayer organic light emitting diodes," Organic Electron. 3, 129-141 (2002).
  39. I. H. Campbell, B. K. Crone, "Improving carrier injection in organic diodes by incorporating charge trapping molecules," Appl. Phys. Lett. 88, .

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited