Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 9,
  • Issue 7,
  • pp. 565-571
  • (2013)

Low-Power Drive Method for MIM-Cathode Displays

Not Accessible

Your library or personal account may give you access

Abstract

A low-power drive method for reducing dissipation power by 75% is developed for cathodoluminescence displays using metal–insulator–metal (MIM) cathodes. The dissipation power is the power consumed in driver circuits for charging and discharging capacitive loads of a display panel. The drive method, called high-impedance (high-Z) drive method, reduces the panel's effective capacitance by connecting non-selected scan lines to high-impedance driver outputs. No visual crosstalk occurred in displayed images on a 3.8-cm-diagonal MIM-cathode display, regardless of significant induced voltages observed on the high-impedance scan lines. This insensitivity to the induced voltages is mainly because the polarity of induced voltages is reverse for electron emission. To reduce the induced voltage, an “enhanced high-Z drive method” is also developed. Analytical formulae to calculate the dissipation power and the amplitude of the induced voltages are devised on the basis of a capacitor model of the MIM-cathode array. Excellent agreement between measured and calculated results validates this model. On the basis of the capacitor model, the total power consumption of a 32-inch diagonal MIM-cathode display is estimated. This estimation indicates the total power consumption would be only 24 W including dissipation power at an average brightness of 200 ${{cd/m}}^{2}$ .

© 2013 IEEE

PDF Article
More Like This
Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission

Rui Li, David Patel, Eslam El-Fiky, Alireza Samani, Zhenping Xing, Yun Wang, and David V. Plant
Opt. Express 26(5) 5395-5407 (2018)

Intermittent operation of QC-lasers for mid-IR spectroscopy with low heat dissipation: tuning characteristics and driving electronics

M. Fischer, B. Tuzson, A. Hugi, R. Brönnimann, A. Kunz, S. Blaser, M. Rochat, O. Landry, A. Müller, and L. Emmenegger
Opt. Express 22(6) 7014-7027 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.