OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Editor: Shin-Tson Wu
  • Vol. 1, Iss. 1 — Sep. 1, 2005
  • pp: 151–

Liquid Crystal Microlens Arrays With Switchable Positive and Negative Focal Lengths

Yun-Hsing Fan, Hongwen Ren, Xiao Liang, Haiying Wang, and Shin-Tson Wu

Journal of Display Technology, Vol. 1, Issue 1, pp. 151- (2005)

View Full Text Article

Acrobat PDF (1886 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A flat microlens array whose focal length can be switched from positive to negative by electric field is demonstrated experimentally and confirmed by computer simulations. To generate the required gradient refractive index, an inhomogeneous electric field is created by a spherical indium-tin-oxide (ITO) electrode which is imbedded in the top flat substrate. The bottom substrate has a planar ITO electrode on its inner surface. A thin polymeric layer is overcoated on top of the spherical ITO to create a flat surface. The disclination lines are eliminated. Because of the employed dual-frequency liquid crystal,the microlens array has fast response times.

© 2005 IEEE

ToC Category:
Research Papers

Yun-Hsing Fan, Hongwen Ren, Xiao Liang, Haiying Wang, and Shin-Tson Wu, "Liquid Crystal Microlens Arrays With Switchable Positive and Negative Focal Lengths," J. Display Technol. 1, 151- (2005)

Sort:  Journal  |  Reset


  1. Y. Fu and N. K. A. Bryan, "Design of hybrid micro-diffractive-refractive optical element with wide field of view for free space optical interconnections", Opt. Express , vol. 10, pp. 540-549, Jun. 2002.
  2. Y. Aoki, Y. Shimada and K. Iga, "Evaluation of numerical aperture and focusing characteristics of planar microlens for optical interconnects", Jpn. J. Appl. Phys., vol. 40, pp. L446-L448, May 2001.
  3. J. Duparré, B. Götz and R. Göring, "Micro-optical 1 square 4 fiber switch for multimode fibers with 600-µm core diameters", Appl. Opt., vol. 42, pp. 6889 -6896, Dec. 2003.
  4. P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day and L. G. Commander, "Switchable fiber coupling using variable-focal-length microlenses", Rev. Sci. Instrum., vol. 72, pp. 3132-3134, Jul. 2001 .
  5. S. Masuda, S. Takahashi, T. Nose, S. Sato and H. Ito, "Liquid-crystal microlens with a beam-steering function", Appl. Opt., vol. 36, pp. 4772-4778, Jul. 1997.
  6. J. Duparré, D. Radtke and P. Dannberg, "Implementation of field lens arrays in beam-deflecting microlens array telescopes", Appl. Opt., vol. 43, pp. 4854 -4861, Sep. 2004.
  7. B. Lee, S. Jung, S.-W. Min and J.-H. Park, "Three-dimensional display by use of integral photography with dynamically variable image planes", Opt. Lett., vol. 26, pp. 1481 -1482, Oct. 2001.
  8. S. Sato, "Liquid-crystal lens-cells with variable focal length", Jpn. J. Appl. Phys. , vol. 18, pp. 1679-1684, Sep. 1979.
  9. L. G. Commander, S. E. Day and D. R. Selviah, "Variable focal length microlenses", Opt. Commun., vol. 177, pp. 157-170, Apr. 2000.
  10. Y. Choi, J. H. Park, J. H. Kim and S. D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal", Opt. Mater., vol. 21, pp. 643-646, Jan. 2002.
  11. T. Nose and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field", Liq. Cryst., vol. 5, pp. 1425-1433, 1989.
  12. M. Ye and S. Sato, "Optical properties of liquid crystal lens of any size", Jpn. J. Appl. Phys., vol. 41, pp. L571-L573, May 2002.
  13. N. A. Riza and M. C. DeJule, "Three-terminal adaptive nematic liquid-crystal lens device", Opt. Lett., vol. 19, pp. 1013-1015, Jul. 1994.
  14. W. W. Chan and S. T. Kowel, "Imaging performance of the liquid-crystal-adaptive lens with conductive ladder meshing", Appl. Opt., vol. 36, pp. 8958-8969, Dec. 1997.
  15. B. Wang, M. Ye, M. Honma, T. Nose and S. Sato, "Liquid crystal lens with spherical electrode", Jpn. J. Appl. Phys., vol. 41, pp. L1232-L1233, Nov. 2002 .
  16. H. Ren, Y. H. Fan, S. Gauza and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens", Appl. Phys. Lett., vol. 84, pp. 4789-4791, Jun. 2004.
  17. A. F. Naumov, M. Y. Loktev, I. R. Guralnik and G. Vdovin, "Liquid-crystal adaptive lenses with modal control", Opt. Lett., vol. 23, pp. 992-994, Jun. 1998.
  18. H. Ren, Y. H. Fan, S. Gauza and S. T. Wu, "Tunable microlens arrays using polymer network liquid crystal", Opt. Commun., vol. 230, pp. 267 -271, Feb. 2004.
  19. V. V. Presnyakov, K. E. Asatryan and T. V. Galstian, "Polymer-stabilized liquid crystal for tunable microlens applications", Opt. Express, vol. 10, pp. 865 -810, Aug. 2002.
  20. H. K. Bucher, R. T. Klingbiel and J. P. VanMeter, "Frequency-addressed liquid crystal field effect", Appl. Phys. Lett., vol. 25, pp. 186-188, Aug. 1974 .
  21. M. Schadt, "Low-frequency dielectric relaxations in nematics and dual-frequency addressing of field effects", Mol. Cryst. Liq. Cryst., vol. 89, pp. 77-92, 1982.
  22. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford: U.K.: Clarendon, 1993, ch. 3.
  23. M. V. K. Chari and S. J. Salon, Numerical Methods in Electromagnetism , San Diego, CA: Academic, 2000.
  24. J. E. Anderson, C. Titus, P. Watson and P. J. Bos, "Significant speed and stability increases in multi-dimensional director simulations", Soc. Inf. Display Tech. Dig., vol. 31, pp. 906 -909, May 2000.
  25. M. Born and E. Wolf, Principle of Optics, Oxford: U.K.: Pergamon, 1993 .
  26. H. Ren, Y. H. Fan and S. T. Wu, "Liquid-crystal microlens arrays using patterned polymer networks", Opt. Lett., vol. 29, pp. 1608-1610, Jul. 2004.
  27. S. T. Wu, "Nematic liquid crystal modulator with response time less than 100 µs at room temperature", Appl. Phys. Lett., vol. 57, pp. 986-988, Sep. 1990 .

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited