OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Editor: Shin-Tson Wu
  • Vol. 1, Iss. 2 — Dec. 1, 2005
  • pp: 304–

Fringing-Field Effects on High-Resolution Liquid Crystal Microdisplays

Kuan-Hsu Fan-Chiang, Shin-Tson Wu, and Shu-Hsia Chen

Journal of Display Technology, Vol. 1, Issue 2, pp. 304- (2005)

View Full Text Article

Acrobat PDF (1041 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Fringing-field effects on high-resolution liquid crystal microdisplay devices, including the reflection-type liquid-crystal-on-silicon (LCOS) and transmission-type poly-silicon thin-film-transistor liquid crystal displays are simulated by the beam propagation method. The electro-optic performances of six commonly used liquid crystal modes are analyzed by the two-dimensional optical simulator. The vertically aligned (VA) cell exhibits the highest contrast ratio, but its fringing-field effect is severe. A circularly polarized light illuminated LCOS device is presented to eliminate the fringing-field effect of the VA cell. Both simulated and confirming experimental results show that the long-standing problems of poor sharpness, low brightness, and slow transition time of the VA cell can be overcome by using a circularly polarized light.

© 2005 IEEE

ToC Category:
Research Papers

Kuan-Hsu Fan-Chiang, Shin-Tson Wu, and Shu-Hsia Chen, "Fringing-Field Effects on High-Resolution Liquid Crystal Microdisplays," J. Display Technol. 1, 304- (2005)

Sort:  Journal  |  Reset


  1. E. H. Stupp and M. S. Brennesholtz, Projection Displays, New York: Wiley, 1998.
  2. Y. Ji, J. Grandhi and M. E. Stefanov, "Fringing-field effects in reflective CMOS LCD", in Soc. Inf. Display Tech. Dig., vol. 30, May 1999, pp. 750 -753.
  3. K. H. F. Chiang, S. H. Chen and S. T. Wu, "Diffraction effect on the high resolution liquid-crystal-on-silicon devices", Jpn. J. Appl. Phys., vol. 44, pp. 3068-3072, May 2005 .
  4. S. T. Wu and C. S. Wu, "Mixed-mode twisted nematic liquid crystal cells for reflective display", Appl. Phy. Lett., vol. 68, pp. 1455-1457, Mar. 1996.
  5. P. Janssen, J. A. Shimizu, J. Dean and R. Albu, "Design aspects of a scrolling color LCoS display", Displays, vol. 23, pp. 99-108, 2002.
  6. J. Grinberg, A. Jacobson, W. Bleha, L. Boswell and G. Myer, "New real-time noncoherent to coherent light image converter-hybrid field-effect liquid-crystal light valve", Opt. Eng., vol. 14, pp. 217-225, Mar. 1975.
  7. S. T. Wu and C. S. Wu, "A biaxial film-compensated thin homogenous cell for reflective liquid crystal display", J. Appl. Phys., vol. 83, pp. 4096-4100, Apr. 1998.
  8. M. F. Schiekel and K. Fahewnschon, "Deformation of nematic liquid crystals with vertical orientation in electric fields", Appl. Phys. Lett., vol. 19, pp. 391-393, Nov. 1971.
  9. W. Y. Chou, C. H. Hsu, S. W. Chang, H. C. Chiang and T. Y. Ho, "A novel design to eliminate fringe field effects for liquid crystal on silicon", Jpn. J. Appl. Phys., vol. 41, pp. 7386-7390, Dec. 2002 .
  10. R. C. Jones, "A new calculus for the treatment of optical systems I. Description and discussion of the calculus", J. Opt. Soc. Amer., vol. 31, pp. 488-493, July 1941 .
  11. D. W. Berreman, "Optics in stratified and anisotropic media-4 4-matrix formulation", J. Opt. Soc. Amer., vol. 62, pp. 502-510, Apr. 1972.
  12. A. Lien, "Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique-incidence", Appl. Phys. Lett., vol. 57, pp. 2767-2769, Dec. 1990.
  13. B. Witzigmann, P. Regli and W. Fichtner, "Rigorous electromagnetic simulation of liquid crystal displays", J. Opt. Soc. Amer. A, vol. 15, pp. 753-757, Mar. 1998.
  14. E. E. Kriezis and S. J. Elston, "Finite-difference time domain method for light wave propagation within liquid crystal devices", Opt. Commun., vol. 165, pp. 99 -105, July 1999.
  15. E. E. Kriezis and S. J. Elston, "Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method", Opt. Commun., vol. 177, pp. 69-77, Apr. 2000.
  16. K. H. F. Chiang, S. T. Wu and S. H. Chen, "High-definition vertically-aligned liquid crystal microdisplays using a circularly polarized light", Appl. Phys. Lett., vol. 87, p. 031 110, Jul. 2005.
  17. D. A. Yakovlev, V. I. Tsoy and V. G. Chigrinov, "Advanced Tools for Modeling of 2D-Optics of LCDs", in Soc. Inf. Display Tech. Dig., vol. 36, May 2005, pp. 58- 61.
  18. E. E. Kriezis and S. J. Elston, "A wide angle beam propagation method for the analysis of tilted nematic liquid crystal structures", J. Mod. Opt., vol. 46, pp. 1201-1212, Jul. 1999.
  19. E. E. Kriezis and S. J. Elston, "Wide-angle beam propagation method for liquid-crystal device calculations", Appl. Opt. , vol. 39, pp. 5707-5714, Nov. 2000.
  20. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, New York: Wiley, 2001.
  21. G. R. Hadley, "Transparent boundary condition for the beam propagation method", IEEE J. Quantum Electron., vol. 28, no. 1, pp. 363-370, Jan. 1992.
  22. D. Cuypers, H. De Smet and A. Van Calster, "Fringing-field induced Disclinations in VAN LCoS Panels", in Int. Display Workshop, 2004, pp. 1679-1682.
  23. id="ref23"twemrule="yes"> D. Cuypers, H. De Smet and A. Van Calster, "Fringing field effects in microdisplays", in Soc. Inf. Display Tech. Dig., vol. 36, May 2005, pp. 1298 -1301.
  24. S. Zhang, M. Lu and K. H. Yang, "Direct observation of disclination evolution in vertically aligned liquid crystal light valves", in Soc. Inf. Display Tech. Dig., vol. 31, May 2000, pp. 898-902.
  25. M. Lu and K. H. Yang, in"Asian Soc. Inf. Display Tech. Dig.", vol. 31, Oct. 2000, pp. 30 -33.
  26. H. de Vries, "Rotatory power and other optical properties of certain liquid crystals", Acta Crystallogr., vol. 4, pp. 219-226, Mar. 1951.
  27. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford: U.K.: Clarendon Press, 1993.
  28. P. C. Yeh and C. Gu, Optics of Liquid Crystal Displays, New York: Wiley, 1999.
  29. B. A. Scott and W. L. DeBoynton, "Light Separation and Recombination System for an Off-Axis Projector", U.S. Patent 6 046 858, Apr. 2000 .
  30. J. E. Anderson, J. Gandhi and M. E. Stefenov, "PH-VAN system design for high contrast rub-free microdisplays", in Soc. Inf. Display Tech. Dig., vol. 32, May 2001, pp. 340-343.
  31. T. Yamazaki, M. Tokumi, T. Suzuki, S. Nakagaki and S. Shimizu, "The single-panel D-ILA hologram device for ILAMTM projection TV", in Int. Display Workshop, 2000, pp. 1077-1080.
  32. H. Kogelnik, "Couple wave theory for thick hologram grating", Bell. Syst. Tech. J., vol. 48, pp. 2909-2947, 1969.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited