OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 10, Iss. 7 — Jul. 1, 2014
  • pp: 526–539

Emerging Quantum-Dots-Enhanced LCDs

Zhenyue Luo, Daming Xu, and Shin-Tson Wu

Journal of Display Technology, Vol. 10, Issue 7, pp. 526-539 (2014)

View Full Text Article

Acrobat PDF (2365 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Quantum dots (QDs)-based backlight greatly enhances the color performance for liquid crystal displays (LCDs). In this review paper, we start with a brief introduction of QD backlight, and then present a systematic photometric approach to reveal the remarkable advantages of QD backlight over white LED, such as much wider color gamut, higher optical efficiency, enhanced ambient contrast ratio, and smaller color shift. Some popular LC modes are investigated, including twisted nematic, fringing field switching (FFS) for touch panels, multi-domain vertical alignment (MVA) for TVs, and blue phase liquid crystal (BPLC) for next-generation displays. Especially, QD-enhanced BPLC combines the major advantages of FFS and submillisecond response time. It has potential to become a unified display solution.

© 2014 IEEE

Zhenyue Luo, Daming Xu, and Shin-Tson Wu, "Emerging Quantum-Dots-Enhanced LCDs," J. Display Technol. 10, 526-539 (2014)

Sort:  Year  |  Journal  |  Reset


  1. M. Schadt, "Milestone in the history of field-effect liquid crystal displays and materials," Jpn. J. Appl. Phys. 48, 03B001 (2009).
  2. D. Barnes, "5.1: Invited paper: LCD or OLED: Who wins?," SID Dig. Tech. Papers 44, 26-27 (2013).
  3. J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, Y. Yin, "5.3: Invited paper: AH-IPS, superb display for mobile device," SID Dig. Tech. Papers 44, 32-33 (2013).
  4. Y. Ukai, "5.2: Invited paper: TFT-LCDs as the future leading role in FPD," SID Dig. Tech. Papers 44, 28-31 (2013).
  5. R. M. Soneira, "Tablet display technology shoot-out," Inf. Display 29, 12-21 (2013).
  6. H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, B. H. Han, "Evaluation of LCD local-dimming-backlight system," J. Soc. Inf. Displays 18, 57-65 (2010).
  7. Q. Hong, T. X. Wu, X. Y. Zhu, R. B. Lu, S. T. Wu, "Extraordinarily high-contrast and wide-view liquid-crystal displays," Appl. Phys. Lett. 86, 121107 (2005).
  8. R. B. Lu, Q. Hong, S. T. Wu, K. H. Peng, H. S. Hsieh, "Quantitative comparison of color performances between IPS and MVA LCDs," J. Display Technol. 2, 319-326 (2006).
  9. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, "Polymer-stabilized liquid crystal blue phases," Nat. Mater 1, 64-68 (2002).
  10. Y. Chen, S.-T. Wu, "Recent advances on polymer-stabilized blue phase liquid crystal materials and devices," J. Appl. Polymer Sci. 40556 (2014).
  11. J. Yan, L. H. Rao, M. Z. Jiao, Y. Li, H. C. Cheng, S. T. Wu, "Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications," J. Mater. Chem. 21, 7870-7877 (2011).
  12. Y. Hirakata, D. Kubota, A. Yamashita, T. Ishitani, T. Nishi, H. Miyake, H. Miyairi, J. Koyama, S. Yamazaki, T. Cho, M. Sakakura, "A novel field-sequential blue-phase-mode AMLCD," J. Soc. Inf. Displays 20, 38-46 (2012).
  13. Y. F. Liu, Y. F. Lan, H. X. Zhang, R. D. Zhu, D. M. Xu, C. Y. Tsai, J. K. Lu, N. Sugiura, Y. C. Lin, S. T. Wu, "Optical rotatory power of polymer-stabilized blue phase liquid crystals," Appl. Phys. Lett. 102, 131102 (2013).
  14. L. H. Rao, Z. B. Ge, S. T. Wu, S. H. Lee, "Low voltage blue-phase liquid crystal displays," Appl. Phys. Lett. 95, 231101 (2009).
  15. D. M. Xu, Y. Chen, Y. F. Liu, S. T. Wu, "Refraction effect in an in-plane-switching blue phase liquid crystal cell," Opt. Express 21, 24721-24735 (2013).
  16. K. M. Chen, S. Gauza, H. Q. Xianyu, S. T. Wu, "Hysteresis effects in blue-phase liquid crystals," J. Display Technol. 6, 318-322 (2010).
  17. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Z. Jiao, L. H. Rao, S. T. Wu, "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals," Appl. Phys. Lett. 96, 071105 (2010).
  18. H. Y. Kim, S. M. Seen, Y. H. Jeong, G. H. Kim, T. Y. Eom, S. Y. Kim, Y. J. Lim, S. H. Lee, "P-164: pressure-resistant characteristic of fringe-field switching (FFS) mode depending on the distance between pixel electrodes," SID Dig. Tech. Papers 36, 325-327 (2005).
  19. J. Lim, Z. Zhang, F. Yang, X. Zuo, R. Yang, Y. Ko, H. Jung, "P-213L: late-news poster: Optimization of high-aperture-ratio fringe-field-switching pressure-resistance characteristic for touch-screen display," SID Dig. Tech. Papers 42, 1650-1653 (2011).
  20. S. H. Lee, S. S. Bhattacharyya, H. S. Jin, K. U. Jeong, "Devices and materials for high-performance mobile liquid crystal displays," J. Mater. Chem. 22, 11893-11903 (2012).
  21. S. H. Lee, S. L. Lee, H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," Appl. Phys. Lett. 73, 2881-2883 (1998).
  22. S. H. Lee, S. M. Kim, S.-T. Wu, "Review paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer," J. Soc. Inf. Disp. 17, 551-559 (2009).
  23. D. K. Yang, S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  24. S. H. Ji, H. C. Lee, J. M. Yoon, J. C. Lim, M. Jun, E. Yeo, "P.91: adobe RGB LCD monitor with 3 primary colors by deep green color filter technology," SID Dig. Tech. Papers 44, 1332-1334 (2013).
  25. R. J. Xie, N. Hirosaki, T. Takeda, "Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes," Appl. Phys.Express 2, 022401 (2009).
  26. R. B. Lu, S. Gauza, S. T. Wu, "LED-lit LCD TVs," Mol. Cryst. Liq. Cryst. 488, 246-259 (2008).
  27. M. Anandan, "Progress of LED backlights for LCDs," J. Soc. Inf. Disp. 16, 287-310 (2008).
  28. S. Kim, S. H. Im, S. W. Kim, "Performance of light-emitting-diode based on quantum dots," Nanoscale 5, 5205-5214 (2013).
  29. J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, K. Char, "Perspective on synthesis, device structures, and printing processes for quantum dot displays," Opt. Mater. Express 2, 594-628 (2012).
  30. Y. Shirasaki, G. J. Supran, M. G. Bawendi, V. Bulovic, "Emergence of colloidal quantum-dot light-emitting technologies," Nat. Photonics 7, 13-23 (2013).
  31. L. Qian, Y. Zheng, J. G. Xue, P. H. Holloway, "Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures," Nat. Photon. 5, 543-548 (2011).
  32. Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, Y. F. Li, "Bright, multicoloured light-emitting diodes based on quantum dots," Nat. Photon. 1, 717-722 (2007).
  33. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, Y. Kim, "White-Light-Emitting diodes with quantum dot color converters for display backlights," Adv. Mater. 22, 3076-3080 (2010).
  34. S. Coe-Sullivanz, W. Liu, P. Allen, J. S. Steckel, "Quantum dots for LED downconversion in display applications," J. Solid State Sci. Technol 2, 3026-3030 (2013).
  35. J. Chen, V. Hardev, J. Hartlove, J. Hofler, E. Lee, "66.1: Distinguised paper: A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film," SID Dig. Tech. Papers 43, 895-896 (2012).
  36. C. B. J. Steckel, W. Liu, J. Xi, C. Hamilton, S. Coe-Sullivan, "Quantum dots: The ultimate down-conversion material for LCDs," SID Dig. Tech. Papers 45, (2014).
  37. J. S. Steckel, R. Colby, W. Liu, K. Hutchinson, C. Breen, J. Ritter, S. Coe-Sullivan, "68.1: Invited paper: Quantum dot manufacturing requirements for the high volume LCD market," SID Dig. Tech. Papers 44, 943-945 (2013).
  38. J. Chen, V. Hardev, J. Yurek, "Quantum-Dot displays: Giving LCDs a competitive edge through color," Inf. Display 29, 12-17 (2013).
  39. Y. Chen, Z. Luo, F. Peng, S. T. Wu, "Fringe-field switching with a negative dielectric anisotropy liquid crystal," J. Display Technol. 9, 74-77 (2013).
  40. Y. Chen, F. Peng, T. Yamaguchi, X. Song, S. T. Wu, "High performance negative dielectric anisotropy liquid crystals for display applications," Crystals 3, 483-503 (2013).
  41. H. Choi, J. H. Yeo, G. D. Lee, "Zig-zag electrode pattern for high brightness in a super in-plane-switching liquid-crystal cell," J. Soc. Info. Disp. 17, 827-831 (2009).
  42. H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, H. J. Hur, "Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy," Liq. Cryst. 39, 1141-1148 (2012).
  43. H. Hong, H. Shin, I. Chung, "In-plane switching technology for liquid crystal display television," J. Display Technol. 3, 361-370 (2007).
  44. A. M. Smith, S. M. Nie, "Semiconductor nanocrystals: Structure, properties, and band gap engineering," Accounts Chem Res 43, 190-200 (2010).
  45. L. Brus, "Electronic wave-functions in semiconductor clusters—experiment and theory," J. Phys. Chem. 90, 2555-2560 (1986).
  46. S. Ithurria, G. Bousquet, B. Dubertret, "Continuous transition from 3D to 1D confinement observed during the formation of cdse nanoplatelets," J. Amer. Chem. Soc. 133, 3070-3077 (2011).
  47. S. Ithurria, B. Dubertret, "Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level," J. Amer. Chem. Soc. 130, 16504-16505 (2008).
  48. P. Reiss, M. Protiere, L. Li, "Core/shell semiconductor nanocrystals," Small 5, 154-168 (2009).
  49. M. Green, "The nature of quantum dot capping ligands," J. Mater. Chem. 20, 5797-5809 (2010).
  50. M. J. Anc, N. L. Pickett, N. C. Gresty, J. A. Harris, K. C. Mishra, "Progress in Non-Cd quantum dot development for lighting applications," J. Solid State Sci. Technol 2, R3071-R3082 (2013).
  51. X. Y. Yang, D. W. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. L. Zhao, H. V. Demir, X. W. Sun, "Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes," Adv. Mater. 24, 4180-4185 (2012).
  52. H. Kim, J. Y. Han, D. S. Kang, S. W. Kim, D. S. Jang, M. Suh, A. Kirakosyan, D. Y. Jeon, "Characteristics of CuInS2/ZnS quantum dots and its application on LED," J. Cryst. Growth 326, 90-93 (2011).
  53. H. Menkara, R. A. Gilstrap, T. Morris, M. Minkara, B. K. Wagner, C. J. Summers, "Development of nanophosphors for light emitting diodes," Opt. Express 19, A972-A981 (2011).
  54. H.-M. Kim, J. Jang, "High-Efficiency inverted quantum-dot light emitting diodes for displays," SID Dig. Tech. Papers 45, (2014).
  55. S. Kobayashi, S. Mikoshiba, S. Lim, LCD Backlights (Wiley, 2009).
  56. J. H. Lee, D. N. Liu, S. T. Wu, Introduction to Flat Panel Displays (Wiley, 2008).
  57. G. Wyszecki, W. Stiles, Color Science—Concepts and Methods, Quantitative Data and Formulate (Wiley, 1982).
  58. Z. Luo, Y. Chen, S. T. Wu, "Wide color gamut LCD with a quantum dot backlight," Opt. Express 21, 26269-26284 (2013).
  59. M. Reyes-Sierra, C. A. C. Coello, "Multi-objective particle swarm optimizers: A survey of the state-of-the-art," Int. J. Comput. Intell. Res 2, 287-308 (2006).
  60. Z. Luo, S. T. Wu, "A spatiotemporal four-primary color LCD with quantum dots," J. Display Technol. 10, 367-372 (2014).
  61. M. Schadt, W. Helfrich, "Voltage-Dependent optical activity of a twisted nematic liquid crystal," Appl. Phys. Lett. 18, 127 (1971).
  62. A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, K. Okamoto, "41.1: a super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology," SID Dig. Tech. Papers 29, 1077-1080 (1998).
  63. Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, J. W. Shiu, "A microsecond-response polymer-stabilized blue phase liquid crystal," Appl. Phys. Lett. 99, 201105 (2011).
  64. L. M. Blinov, V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, 1994).
  65. R. B. Lu, X. Y. Zhu, S. T. Wu, Q. Hong, T. X. Wu, "Ultrawide-View liquid crystal displays," J. Display Technol. 1, 3-14 (2005).
  66. X. Zhu, Z. Ge, S. T. Wu, "Analytical solutions for uniaxial-film-compensated wide-view liquid crystal displays," J. Display Technol. 2, 2-20 (2006).
  67. S. S. Kim, B. H. Berkeley, K. H. Kim, J. K. Song, "New technologies for advanced LCD-TV performance," J. Soc. Inf. Displays 12, 353-359 (2004).
  68. J. H. Lee, X. Y. Zhu, Y. H. Lin, W. K. Choi, T. C. Lin, S. C. Hsu, H. Y. Lin, S. T. Wu, "High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device," Opt. Express 13, 9431-9438 (2005).
  69. R. L. Donofrio, "Review paper: The Helmholtz–Kohlrausch effect," J. Soc. Inf. Disp. 19, 658-664 (2011).
  70. P. K. Kaiser, "The Helmholtz–Kohlrausch effect," Color Res. Appl. 10, 187 (1985).
  71. R. Lu, Q. Hong, Z. B. Ge, S. T. Wu, "Color shift reduction of a multi-domain IPS-LCD using RGB-LED backlight," Opt. Express 14, 6243-6252 (2006).
  72. H. C. Cheng, J. Yan, T. Ishinabe, C. H. Lin, K. H. Liu, S. T. Wu, "Wide-View vertical field switching blue-phase LCD," J. Display Technol. 8, 627-633 (2012).
  73. H. C. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Y. Liu, T. H. Huang, C. Y. Tsai, C. H. Lin, S. T. Wu, "Blue-Phase liquid crystal displays with vertical field switching," J. Display Technol. 8, 98-103 (2012).
  74. L. H. Rao, H. C. Cheng, S. T. Wu, "Low voltage blue-phase LCDs with double-penetrating fringe fields," J. Display Technol. 6, 287-289 (2010).
  75. L. H. Rao, Z. B. Ge, S. T. Wu, "Zigzag electrodes for suppressing the color shift of Kerr effect-based liquid crystal displays," J. Display Technol. 6, 115-120 (2010).
  76. C.-Y. Tsai, T.-J. Tseng, L.-Y. Wang, F.-C. Yu, Y.-F. Lan, P.-J. Huang, S.-Y. Lin, K.-M. Chen, B.-S. Tseng, C.-W. Kuo, C.-H. Lin, J.-K. Lu, N. Sugiura, "17.1: Invited paper: Polymer-stabilized blue phase liquid crystal displays applying novel groove cell structure," SID Dig. Tech. Papers 44, 182-183 (2013).
  77. L. Rao, Z. Ge, S. T. Wu, "Zigzag electrodes for suppressing the color shift of Kerr effect-based liquid crystal displays," J. Display Technol. 6, 115-120 (2010).
  78. C. H. Chen, F. C. Lin, Y. T. Hsu, Y. P. Huang, H. P. D. Shieh, "A field sequential color LCD based on color fields arrangement for color breakup and flicker reduction," J. Display Technol. 5, 34-39 (2009).
  79. T. Ishinabe, K. Wako, K. Sekiya, T. Kishimoto, T. Miyashita, T. Uchida, "High-performance OCB-mode field-sequential-color LCD," J. Soc. Inf. Displays 16, 251-256 (2008).
  80. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, M. G. Craford, "Status and future of high-power light-emitting diodes for solid-state lighting," J. Display Technol. 3, 160-175 (2007).
  81. J. H. Oh, K.-H. Lee, H. C. Yoon, H. Yang, Y. R. Do, "Color-by-blue display using blue quantum dot light-emitting diodes and green/red color converting phosphors," Opt. Express 22, A511-A520 (2014).
  82. Y. Igarashi, T. Yamamoto, Y. Tanaka, J. Someya, Y. Nakakura, M. Yamakawa, Y. Nishida, T. Kurita, "43.3: summary of moving picture response time (MPRT) and futures," SID Dig. Tech. Papers 35, 1262-1265 (2004).
  83. Y. Zhang, X. Li, Y. Xu, Y. Shi, W. Song, W. Lei, "Motion-blur characterization with simulation method for mobile LCDs," J. Soc. Inf. Disp. 16, 1115-1123 (2008).
  84. J.-K. Yoon, E.-M. Park, J.-S. Son, H.-W. Shin, H.-E. Kim, M. Yee, H.-G. Kim, C.-H. Oh, B.-C. Ahn, "27.2: the study of picture quality of OLED TV with WRGB OLEDs structure," SID Dig. Tech. Papers 44, 326-329 (2013).
  85. H. V. Demir, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, A. Eychmuller, "Quantum dot integrated LEDs using photonic and excitonic color conversion," Nano Today 6, 632-647 (2011).
  86. J. T. Hu, L. S. Li, W. D. Yang, L. Manna, L. W. Wang, A. P. Alivisatos, "Linearly polarized emission from colloidal semiconductor quantum rods," Sci. 292, 2060-2063 (2001).
  87. A. Sitt, A. Salant, G. Menagen, U. Banin, "Highly emissive nano rod-in-rod heterostructures with strong linear polarization," Nano Lett. 11, 2054-2060 (2011).
  88. J. Kurtin, N. Puetz, B. Theobald, N. Stott, J. Osinski, "12.5: quantum dots for high-color-gamut LCDs using an on-chip LED solution," SID Dig. Tech. Papers (2014).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited