OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 10, Iss. 9 — Sep. 1, 2014
  • pp: 721–728

A 128 $\times$ 96 Pixel CMOS Microdisplay Utilizing Hot Carrier Electroluminescence From Junctions in Reach Through

Petrus J. Venter and Monuko du Plessis

Journal of Display Technology, Vol. 10, Issue 9, pp. 721-728 (2014)


View Full Text Article

Acrobat PDF (913 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Visible light from silicon junctions under avalanche breakdown can be used to create microdisplay systems with integrated light sources. Junctions available in standard CMOS usually breaks down at much larger voltages than the typical operating voltage for integrated circuitry. It is possible to reduce the operating voltage of by making use of techniques which changes the electric field profile in light sources based on hot carrier electroluminescence such as electric field reach through between two highly doped implant regions. This work successfully demonstrates the possibility of tailoring the operating voltage and quantifying the optical performance in an integrated microdisplay consisting of a 128 by 96 pixel array based on light sources in standard CMOS. Based on the approach followed it becomes possible to integrate light sources in such a manner that it can coexist and interact with other on-chip analog and digital circuitry. The requirements for architectural features of a microdisplay in standard CMOS is discussed and it is shown to be possible to create large scale integrated circuits containing integrated light sources in standard CMOS without the need for postprocessing or additional back end modifications.

© 2014 IEEE

Citation
Petrus J. Venter and Monuko du Plessis, "A 128 $\times$ 96 Pixel CMOS Microdisplay Utilizing Hot Carrier Electroluminescence From Junctions in Reach Through," J. Display Technol. 10, 721-728 (2014)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-10-9-721


Sort:  Year  |  Journal  |  Reset

References

  1. R. Newman, "Visible light from a Si p-n junction," Phys. Rev. 100, 700-703 (1955).
  2. M. du Plessis, H. Aharoni, L. W. Snyman, "Silicon LEDs fabricated in standard VLSI technology as components for all silicon monolithic integrated optoelectronic systems," IEEE J. Sel. Topics Quantum Electron. 8, 1412-1419 (2002).
  3. J. Bude, N. Sano, A. Yoshii, "Hot-carrier luminescence in Si," Phys. Rev. B 45, 5848-5856 (1992).
  4. M. du Plessis, P. J. Venter, E. Bellotti, "Spectral characteristics of hot electron electroluminescence in silicon avalanching junctions," IEEE J. Quantum Electron. 49, 570-577 (2013).
  5. D. Armitage, I. Underwood, S.-T. Wu, Introduction to Microdisplays (Wiley, 2006).
  6. A. Ghosh, "Full-color OLED on silicon microdisplay," Proc. SPIE 4464 (2002) pp. 1-10.
  7. P. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. Von Behren, Y. Kostoulas, J. M. V. Vandyshev, K. Hirschman, "Light-emitting porous silicon: Materials science, properties, and device applications," IEEE J. Sel. Topics Quantum Electron. 1, 1123-1139 (1995).
  8. S. P. Duttagupta, K. D. Hirschman, L. Tsybeskov, P. M. Fauchet, "Silicon-based visible light-emitting devices integrated into microelectronic circuits," Nature 384, 338-341 (1996).
  9. P. Jaguiro, P. Katsuba, S. Lazarouk, A. Smirnov, "Porous silicon avalanche LEDs and their applications in optoelectronics and information displays," Acta Physica Polonica A 112, 1031-1036 (2007).
  10. A. R. Chen, A. I. Akinwande, H. S. Lee, "CMOS-based microdisplay with calibrated backplane," J. Solid-State Circuits 40, 2746-2755 (2005).
  11. P. J. Venter, M. du Plessis, A. W. Bogalecki, M. E. Goosen, P. Rademeyer, "An 8 $\times$ 64 pixel dot matrix microdisplay in 0.35- $\mu{\hbox{m}}$ complementary metal-oxide semiconductor technology," SPIE Opt. Eng. 51, 1-7 (2012).
  12. S. M. Sze, G. Gibbons, "Effect of junction curvature on breakdown voltage in semiconductors," Solid-State Electron. 9, 831-845 (1966).
  13. M. du Plessis, H. Aharoni, L. W. Snyman, "A silicon transconductance light emitting device (TRANSLED)," Sens. Actuators, A 80, 242-248 (2000).
  14. J. J. Vos, "Colorimetric and photometric properties of a 2 $^{\circ}$ fundamental observer," Color Res. Appl. 3, 125-128 (1978).
  15. L. T. Sharpe, A. Stockman, W. Jagla, H. Jägle, "A luminous efficiency function, ${\rm v}\ast({\rm lambda})$, for daylight adaptation," J. Vision 5, 948-968 (2005).
  16. A. W. Bogalecki, M. du Plessis, P. J. Venter, M. E. Goosen, I. J. Nell, "Integrated optical light directing structures in CMOS to improve light extraction efficiency," Proc. 22nd IEEE Int. Conf. on Microelectron. (2010).
  17. A. Chatterjee, B. Bhuva, R. Schrimpf, "High-speed light modulation in avalanche breakdown mode for Si diodes," IEEE Electron Device Lett. 25, 628-630 (2004).
  18. M. E. Goosen, P. J. Venter, M. du Plessis, A. W. Bogaleck, A. C. Alberts, P. Rademeyer, "A high-speed 0.35 $\mu{\hbox{m}}$ CMOS optical communication link," Proc. SPIE 8267, Optoelectronic Interconnects XII, 826716 (2012).
  19. S. Hecht, S. Shlaer, "Intermittent stimulation by light V. The relation between intensity and critical frequency for different parts of the spectrum," J. Gen. Physiol. 19, 965-977 (1936).
  20. A. M. Bloch, "Expérience sur la vision," Comptes Rendus de Séances de la Soc. Biol. 37, 493-495 (1885).
  21. F. Scharnowski, F. Hermens, M. H. Herzog, "Bloch's law and the dynamics of feature fusion," Vision Res. 47, 2444-2452 (2007).
  22. D. Kahneman, J. Norman, "The time-intensity relation in visual perception as a function of observer's task," J. Experim. Psychol. 38, 215-220 (1964).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited