OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 2, Iss. 3 — Sep. 1, 2006
  • pp: 274–283

Three-Dimensional Display Rendering Acceleration Using Occlusion Camera Reference Images

Voicu Popescu, Paul Rosen, and Daniel G. Aliaga

Journal of Display Technology, Vol. 2, Issue 3, pp. 274-283 (2006)


View Full Text Article

Acrobat PDF (2307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Volumetric three-dimensional (3-D) displays allow the user to explore a 3-D scene free of joysticks, keyboards, goggles, or trackers. For non-trivial scenes, computing and transferring a 3-D image to the display takes hundreds of seconds, which is a serious bottleneck for many applications. We propose to represent the 3-D scene with an occlusion camera reference image (OCRI). The OCRI is a compact scene representation that stores only and all scene samples that are visible from a viewing volume centered at a reference viewpoint. The OCRI enables computing and transferring the 3-D image an order of magnitude faster than when the entire scene is processed. The OCRI approach can be readily applied to several volumetric display technologies; we have tested the OCRI approach with good results on a volumetric display that creates a 3-D image by projecting 2-D scene slices onto a rotating screen.

© 2006 IEEE

Citation
Voicu Popescu, Paul Rosen, and Daniel G. Aliaga, "Three-Dimensional Display Rendering Acceleration Using Occlusion Camera Reference Images," J. Display Technol. 2, 274-283 (2006)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-2-3-274


Sort:  Journal  |  Reset

References

  1. Actuality SystemsBedfordMA (2006) http://www.actuality-systems.com/.
  2. ATIMarkhamONCanada (2006) http://www.ati.com/.
  3. C. Buhler, M. Bosse, L. McMillan, S. Gortler, M. Cohen, "Unstructured lumigraph rendering," Proc. SIGGRAPH 2001 pp. 425-432.
  4. C. F. Chang, G. Bishop, A. Lastra, "LDI tree: a hierarchical representation for image-based rendering," Proc. SIGGRAPH'99 pp. 291-298.
  5. Dimension TechnologiesRochesterNY (2006) http://www.dti3d.com/.
  6. E. Downing, "A three-color, solid-state, three-dimensional display," Science 273, 5279 (1996).
  7. G. Favalora, "100 Million-voxel volumetric display," Proc. SPIE 16th Annu. Int. Symp. on Aerospace/Defense Sensing, Simulation, and Controls (2002).
  8. T. Fujii, T. Kimoto, M. Tanimoto, "A new flexible acquisition system of ray-space data for arbitrary objects," IEEE Trans. Circuits Syst. Video Technol. 10, 218-224 (2000).
  9. A. Glassner, An Introduction to Ray Tracing (Morgan Kaufman, 1989).
  10. S. Gortler, R. Grzeszczuk, R. Szeliski, M. Cohen, "The lumigraph," Proc. SIGGRAPH 96 pp. 43-54.
  11. D. Grossberg, S. Nayar, "A general imaging model and a method for finding its parameters," Proc. ICCV 2001 .
  12. R. Gupta, R. I. Hartley, "Linear pushbroom cameras," IEEE Trans. Pattern Anal. Mach. Intell. 19, 963-975 (1997).
  13. A. Isaksen, L. McMillan, S. Gortler, "Dynamically reparameterized light fields," Proc. SIGGRAPH 2000 pp. 297-306.
  14. H. E. Ives, "A camera for making parallax panoramagrams," J. Opt. Soc. Amer. 435-439 (1928).
  15. M. Halle, "Autostereoscopic displays in computer graphics," Proc. SIGGRAPH 97 (1997) pp. 58-62.
  16. M. Levoy, P. Hanrahan, "Light field rendering," Proc. SIGGRAPH 96 (1996) pp. 31-42.
  17. LightSpace TechnologiesNorwalkCT http://www.lightspacetech.com/ (2006).
  18. M. Lucente, "Interactive three-dimensional holographic displays: seeing the future in depth," Proc. ACM SIGGRAPH 97 (1997).
  19. L. Levkovich-Maslyuk, "Depth image-based representation and compression for static and animated 3-D objects," IEEE Trans. Circuits Syst. Video Technol. 14, 1032-1045.
  20. W. Mark, L. McMillan, G. Bishop, "Post-rendering 3D warping," Proc. 1997 Symp. on Interactive 3D Graphics (1997) pp. 7-ff.
  21. W. Matusik, H. Pfister, "3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes," Proc. SIGGRAPH 2004 pp. 814-824.
  22. N. Max, K. Oshaki, "Rendering trees from precomputed z-buffer views," Rendering Techniques '95: Proc. Eurographics Rendering Workshop 1995 (1995) pp. 45-54.
  23. D. McFarlane, A True Volumetric 3D Display http://www.utdallas.edu/~dlm/A%20True%20Volumetric%20Three%20Dimensional%20Display.htm.
  24. L. McMillan, G. Bishop, "Plenoptic modeling: an image-based rendering system," Proc. SIGGRAPH '95 pp. 39-46.
  25. C. Mei, V. Popescu, E. Sacks, "The occlusion camera," Proc. Eurographics 2005 (2005) pp. 335-342.
  26. Microsoft DirectX http://www.microsoft.com/windows/directx/.
  27. NVIDIA Corporation http://www.nvidia.com/.
  28. OpenGL http://www.opengl.org/.
  29. T. Pajdla, Geometry of two-slit camera Res. Rep. CTU-CMP-2002-02.
  30. K. Perlin, S. Paxin, J. Kollin, "An autostereoscopic display," Proc. SIGGRAPH 2000 pp. 319-326.
  31. Perspecta display Actuality Systems http://www.actualitysystems.com/site/content/perspecta_display1-9.html.
  32. V. Popescu, D. Aliaga, "The depth discontinuity occlusion camera," Proc. ACM Symp. on Interactive 3D Graphics and Games (2006).
  33. V. Popescu, A. Lastra, "The vacuum buffer," Proc. oACM Symposium on Interactive 3D Graphics (2001).
  34. V. Popescu, "The warpengine: an architecture for the post-polygonal age," Proc. SIGGRAPH 2000 pp. 433-442.
  35. V. Popescu, A. Lastra, M. Oliveira, "Efficient warping for architectural walkthroughs using layered depth images," Proc. IEEE Visualization 1998 pp. 211-215.
  36. P. Rademacher, G. Bishop, "Multiple-center-of-projection images," Proc SIGGRAPH '98 pp. 199-206.
  37. J. Shade, "Layered depth images," Proc. SIGGRAPH 98 pp. 231-242.
  38. A. Smolic, P. Kauff, "Interactive 3-D video representation and coding technologies," Proc. IEEE 93, 98-110 (2006).
  39. The Stanford 3D Scanning Repository http://graphics.stanford.edu/data/3Dscanrep/.
  40. A. Stern, B. Javidi, "Ray phase space approach for 3D imaging and 3D optical data representation," J. Display Technol. 1, 141-150 (2005).
  41. A. C. Traub, "Stereoscopic display using varifocal mirror oscillations," Appl. Opt. 6, 1085-1087 (1967).
  42. L. Westover, "Footprint evaluation for volume rendering," Proc. SIGGRAPH 1990 pp. 367-376.
  43. T. Whitted, "An improved illumination model for shaded display," Commun. ACM 23, 343-349.
  44. D. N. Wood, "Surface light fields for 3D photography," Proc. SIGGRAPH'00 (2000) pp. 287-296.
  45. J. Yu, L. McMillan, "General linear cameras," Proc. 8th Eur. Conf. on Computer Vision (ECCV) (2004) pp. 14-27.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited